
BARRICELLI

TDT4295 Computer Design Project

Eirik Flogard
Fedor Fadeev
Péter Gombos
Emil Taylor Bye
Rune Holmgren
Torbjørn Langland
Per Thomas Lundal
Bjørn Åge Tungesvik
Sigve Sebastian Farstad
Odd Magnus Trondrud

A high performance, parallel genetic algorithm computer

November 20, 2013

Abstract

Barricelli, the computer designed in this project, is a general purpose MIMD
computer which is equipped with specialized hardware for high performance
computation of hard problems using genetic algorithms. A fully functional
system was designed and implemented “from scratch”, however no physical
realization of the design survived. This complicated testing.

Acknowledgements

A big thank you is extended to the following for invaluable help and guidance
during this project:

Gunnar Tufte for fantastic insight, help and project coordination.

Yaman Umuroglu for help and advice.

Stephano Nichele for administrative work.

Odd Rune S. Lykkebø for assistance when all seemed lost.

The Bitless Team for company in the lab during late hours of the night.

Ole Jørgen Seeland and IDI for lending us their 3D-printers.

CONTENTS

I Introduction and Background 1

1 Introduction 2
1.1 Assignment . 2

1.1.1 Assignment Text . 2
1.1.2 Interpretation . 3

1.2 Requirements . 4
1.2.1 Functional Requirements 4
1.2.2 Non-functional Requirements 6

1.3 Deliverables . 7
1.4 About the Name . 8
1.5 Structure of this Report . 8

2 Background 10
2.1 MIMD Computing . 10
2.2 Genetic Algorithms . 11

2.2.1 Concepts and Definitions 12
2.2.2 Pseudo-code for a General Genetic Algorithm 12
2.2.3 Generational Genetic Algorithms 13
2.2.4 Steady State Genetic Algorithms 14

II Design and Implementation 16

3 System Overview 17
3.1 Application . 17
3.2 System Architecture . 17
3.3 Components . 18

3.3.1 FPGA . 18

iv

Computer Project Barricelli Performance Group

3.3.2 SCU . 18
3.3.3 Memory . 20

4 Processor Design 21
4.1 Initial requirement . 21

4.1.1 Parallelism . 21
4.2 Instruction Set Architecture . 22

4.2.1 Instruction Formats . 22
4.2.2 Genetics Instructions . 23

4.3 Processor Architecture . 23
4.3.1 Instruction Memory . 24
4.3.2 Data Memory . 25
4.3.3 Rated and Unrated Pools 29
4.3.4 PRNG Module . 30
4.3.5 Fitness Core . 31
4.3.6 The Genetic Pipeline . 45

5 PCB 56
5.1 Design choices . 57

5.1.1 Field Programmable Gate Array (FPGA) 57
5.1.2 Microcontroller / System Control Unit (SCU) 57
5.1.3 Communication . 57
5.1.4 Input/Output devices . 58
5.1.5 Memory . 59
5.1.6 Crystal . 59

5.2 Power supply . 59
5.3 Power plane . 61
5.4 Footprints . 61

5.4.1 Obtaining footprints . 61
5.5 Budget . 64
5.6 Design Process . 65

5.6.1 PCB design and routing 65
5.6.2 Soldering . 65

5.7 Problems and workaround . 66
5.7.1 Power connector footprint 66
5.7.2 FPGA to SCU bus routing 66
5.7.3 USB port . 67
5.7.4 Oscillator . 68

6 Input/Output 69
6.1 Input and Output . 69

6.1.1 Initial requirements . 69
6.1.2 Communication channels 70

6.2 FPGA Control . 71
6.3 IO Program . 73
6.4 Design decision . 74

6.4.1 Operating system . 74
6.4.2 FPGA Communication 74

6.5 Issues . 74
6.5.1 Crystal . 74

v

Computer Project Barricelli Performance Group

6.5.2 I/O units failing . 75
6.5.3 FPGA Memory access issues 75

7 Additional Components 76
7.1 Galapagos Assembler . 76
7.2 Case . 77

7.2.1 Design . 78
7.2.2 Tools . 79
7.2.3 Problems and workarounds 80

III Results and Discussion 82

8 Tests 83
8.1 Testing the Processor . 83

8.1.1 VHDL-based Subcomponent Unit Test Simulations 83
8.1.2 VHDL-based Processing Unit Integration Test Simulations 87
8.1.3 VHDL-based System test Simulations 87
8.1.4 Timing simulation . 93

8.2 Testing the PCB . 94
8.3 Testing IO . 94

8.3.1 IO device tests . 94
8.3.2 FPGA bus . 96

8.4 Additional Tests . 96
8.4.1 The Pseudo-Random Number Generator 96

9 Results 98
9.1 Research . 98

9.1.1 Steady State Genetic Algorithm 98
9.2 Measurements . 101

9.2.1 Performance . 102
9.3 Demonstration Programs . 102

9.3.1 Genetic Algorithm: Color Search 102
9.3.2 Genetic Algorithm: Binary Knapsack Problem 104
9.3.3 Blinkenlights . 105

10 Discussion 106
10.1 Performance . 106

10.1.1 Performance Measurements and Benchmarking 107
10.1.2 Average Instructions per Cycle 107

10.2 Theory . 107
10.2.1 SPMD and Concurrency 107
10.2.2 Using CISC or RISC ISAs 107
10.2.3 Memory Management Policies 108

11 Work Process 110
11.1 Development model . 110
11.2 Group Organization . 110
11.3 Organizational tools . 111

11.3.1 GitHub . 111

vi

Computer Project Barricelli Performance Group

11.3.2 Trello . 111
11.4 Tools . 112

11.4.1 Software . 112
11.4.2 Hardware . 113

12 Conclusion and
Further Work 114
12.1 Further Work . 115

Glossary 116

IV Appendices 118

A Galapagos Instruction Set Architecture Documentation 119

B PCB schematics 166

C Case schematics 185

D Galapagos Assembler Listing 190

E Demonstration Program Listings 198

F Test Bench Documentation 202
F.1 Introduction . 203
F.2 Component Tests . 203

F.2.1 Fitness Core . 203
F.2.2 Genetic Pipeline . 205

G PCB Components 207

vii

LIST OF FIGURES

2.1 Block-level overview of a MIMD computer with a shared memory
model . 11

3.1 System Overview . 18

4.1 Processor Architecture . 23
4.2 Data memory read cycle . 26
4.3 Data memory write cycle . 26
4.4 Data memory controller state machine 27
4.5 Data memory controller signals mapping 28
4.6 Fitness values and individuals being read by the selection cores

followed by a fitness core writing a new fitness and individual. . . 30
4.7 A two-individual selection core access 30
4.8 Architecture block diagram . 32
4.9 Example use of ShifterVariable 40
4.10 Fitness memory controller state machine 43
4.11 Fitness genetic controller state machine 44
4.12 Genetic pipeline architecture . 46
4.13 Architecture block diagram . 48
4.14 Selection core state machine . 48
4.15 Crossover split function . 49
4.16 Masking for split function . 49
4.17 Crossover double-split function 50
4.18 Masking for double-split function 50
4.19 Crossover XOR function . 51
4.20 Mutation core function concept 52
4.21 Setting mutation . 54
4.22 Performing mutation . 55

viii

Computer Project Barricelli Performance Group

5.1 The final design of the PCB. 56
5.2 Final powersupply design. 60
5.3 Final design of the power plane. The power plane for 1.2V is the

long polygon that goes from the “powersupply” part of the board
to the FPGA core. The design is also focusing on having as low
path as possible to all the components that are using the power
grid. 61

5.4 Polarized capacitor footprint dimensions 63
5.5 Pads on footprint are smaller than pins of component 64
5.6 For aesthetic appeal we 3D printed a bridge for the wire to run in 67
5.7 The figure shows the “hack” that were made on the PCB in an

attempt to fix the USB. Sadly the board were accidentally short-
circuted and died before this the hack could be fully verified to
be working . 67

6.1 The body of the IO program’s main loop 73

7.1 Case . 77
7.2 Keyboard mechanism . 78
7.3 Case before assembly. (The two parts of the NTNU logo are

already assembled) . 79
7.4 Some of the failed prints . 80

9.1 Total performance of Barricelli’s fitness cores, as a function of
number of cores . 102

9.2 The binary coding of an individual for the color search problem . 103
9.3 Color search progression (7 cores, 1 core sampled) 104
9.4 The binary coding of an individual for the binary knapsack problem104

C.1 Case design . 186
C.2 The front of the case . 186
C.3 The back of the case . 186
C.4 The keyboard tray . 187
C.5 Side panel with the names of the team members 187
C.6 The side panel with the picture of Nils Aall Barricelli 187
C.7 The support holding the buttons of the keyboard in place 188
C.8 The plastic edge that stop the keyboard from sliding all the way

out . 188
C.9 The blue part of the NTNU logo in front of the case 189
C.10 The blue part of the NTNU logo in front of the case 189
C.11 An early sketch of the case . 189

F.1 Crossover Split Simulation Screenshot 205
F.2 Crossover Double-Split Simulation Screenshot 205
F.3 Crossover XOR Simulation Screenshot 205
F.4 Crossover Toplevel Simulation Screenshot 206
F.5 Mutation Core Simulation Screenshot 1 206
F.6 Mutation Core Simulation Screenshot 2 206

ix

LIST OF TABLES

1.1 Functional Requirements . 4
1.2 Non-functional Requirements . 6
1.3 Deliverables . 7

4.1 MIPS Design Principles . 22
4.2 Control unit output . 35
4.3 Overview of opcodes . 36
4.4 Overview of function codes . 36
4.5 Gene operation codes . 37
4.6 Memory operation codes . 38
4.7 4-to-1 multiplexor output . 38
4.8 Forwarding control signals . 41

5.1 Footprints used in the project and how or where they were obtained. 62

6.1 Overview of disk I/O functions 70
6.2 Lines between the SCU and FPGA 72

8.1 ALU . 84
8.2 The selection core . 84
8.3 Crossover Core Split function . 85
8.4 Crossover Core Double-Split function 85
8.5 Crossover Core XOR function . 86
8.6 Crossover Core Toplevel . 86
8.7 Mutation Core . 87
8.8 RRR and RRI instructions . 88
8.9 Branch taken . 88
8.10 Branch not taken . 89
8.11 Conditional instruction executed 89

x

Computer Project Barricelli Performance Group

8.12 Conditional instruction not executed 90
8.13 Store data . 90
8.14 Load data . 91
8.15 Store gene . 91
8.16 Load gene . 92
8.17 Find color: A genetic solution . 92
8.18 The knapsack problem : A genetic solution 93
8.19 DieHarder test results of the PRNG 97

9.1 Results of ten runs of the genetic programs 101

11.1 Group Allocation . 111

xi

LIST OF ALGORITHMS

1 Generic genetic algorithm . 13

2 Fetching an instruction from the cache 24
3 Round-robin selection . 25
4 Pseudo-random number generation algorithm 31
5 The tournament selection used in the selection core. 47

6 The fitness function for the binary knapsack problem 105

xii

LIST OF LISTINGS

9.1 Genetic problem . 99
9.2 Generational solver . 99
9.3 Steady state solver . 100

xiii

Part I

Introduction and
Background

1

CHAPTER

1

INTRODUCTION

This report presents a solution to “Task: Construct a Multiple Program, Mul-
tiple Data” of the autumn 2013 course TDT4295 Computer Design Project at
the Norwegian University of Science and Technology (NTNU).

The course is a single-task, whole-semester course in which a group of students
collaborate to design and implement a computer in hardware. The computer
presented in this report was made by a group of 10 students.

This report details the design and implementation of Barricelli, the solution
computer designed for this project. The design process is also documented in
this report.

1.1 Assignment

This section details the assignment given for the project.

1.1.1 Assignment Text

TDT4295 Computer Design Project

Assignment Text

2013

Task: Construct a Multiple Program, Multiple Data [sic]

2

Computer Project Barricelli Performance Group

The performance increase available from harvesting Instruction Level
Parallelism (ILP) from the serial instruction stream is limited be-
cause we have reached the maximum power consumption that can be
handled without expensive cooling solutions. Consequently, there is
a significant interest in single-chip parallel processor solutions. The
processor cores in commercial multi-core chips are conventional de-
signs and therefore reasonably complex. In this work, your task is to
design a multiprocessor,Multiple Instruction, Multiple Data streams
(MIMD). A processor classified MIMD include a multiple-instruction
stream organizations. Such processors can executing different in-
structions, i.e. minimum 2 independent programs, on different (in-
dependent) data.

The task also include that a suitable application is chosen to demon-
strate the processor. Your processor will be implemented on an
FPGA, and you are free to choose how to realize your MIMD com-
puter architecture. The system should be shown to work with a
suitable application. Studying the architecture of the Cell proces-
sor, or in general multi-core processors, can be a good starting point.
And a final tip; Keep it simple, as simple as possible, but not simpler.

Due to a large number of students this year, we will divide the
work into two independent projects: a) Performance and b) Energy
efficiency. The goal of group a) is to achieve maximum performance
while group b) should try to balance performance and energy. The
reports from both groups should include an evaluation of prototype
performance and energy consumption.

Additional requirements

The unit must utilize an Energy Micro microcontroller and a Xilinx
FPGA. The budget is 10.000 NOK, which must cover components
and PCB production. The unit design must adhere to the limits
set by the course staff at any given time. Deadlines are given in a
separate time schedule.

Evaluation

The project is evaluated based on the project report and an oral
presentation of the work as well as a prototype demonstration. One
grade will be given to the group as a whole, unless there are signifi-
cant variations in the amount of effort put into the project. [16]

1.1.2 Interpretation

There are many different ways to solve the task described in the assignment
text in Subsection 1.1.1 on the preceding page. To give direction to the project,
an application for the solution computer was chosen at an early stage. The
application chosen for the solution computer presented in this report is a generic
solver of optimization and approximation problems using genetic algorithms.
The main goal for the project is to be able to implement the generic solver by
exploiting the principles of the MIMD architecture scheme.

3

Computer Project Barricelli Performance Group

As mentioned in the assignment text, there are two groups working on the com-
puter design project, making two different computers. The solution presented
in this report is the solution of the group that was to achieve maximum perfor-
mance.

1.2 Requirements

This section describes the requirements for this assignment, and explains the
rationale behind them. The functional requirements for the project are listed in
table 1.1. The non-functional requirements for the project are listed in table 1.2
on page 6.

1.2.1 Functional Requirements

Requirement Description Priority
FR1 The system should be a MIMD computer. High
FR2 The system should be a general computer. High
FR3 The system should be able to solve hard prob-

lems using genetic algorithms.
High

FR4 The system should be able to receive instruc-
tions and data from an external entity.

High

FR5 The system should be able to send data to an
external entity.

High

FR6 The product should have maximized perfor-
mance rather than energy-efficiency.

Medium

FR7 The instruction set should contain custom
made instructions for faster execution of ge-
netic algorithms.

Medium

Table 1.1: Functional Requirements

FR1

FR1 in table 1.1 states that the system should be a MIMD computer. This re-
quirement is set as the main requirement in the assignment text, and is therefore
a high priority requirement.

FR2

FR2 in table 1.1 states that the system should be a general computer. That
means that the computer should be Turing Complete, which implies that it
can solve any computable problem. This was set as a goal because it enables
the computation of fitness values of genetic individuals for arbitrary problems.
Because this requirement is a necessity for the chosen genetic algorithm solver
application, is has a high priority.

4

Computer Project Barricelli Performance Group

FR3

FR3 in table 1.1 on the previous page states that the system should be able
to solve hard problems using genetic algorithms. (For a definition of a hard
problem, see 2.2 on page 11.) This is the application that was chosen for the
computer, and is its raison d’être. Therefore, this requirement also has a high
priority.

FR4

FR4 in table 1.1 on the previous page states that the system should be able to
receive instructions and data from an external entity. Without this requirement
fulfilled, it is impossible to program, configure or run the program with other
instructions or data than what comes ‘pre-loaded’, so to speak. That would
make the system pretty useless. For this reason, this requirement also has a
high priority.

FR5

FR5 in table 1.1 on the preceding page states that the system should be able
to send data to an external entity. This is needed for the computer to return
its computed results to a user. Again, without this requirement, the computer
would be quite useless. Of course, that means that this requirement also must
have a high priority.

FR6

FR6 in table 1.1 on the previous page states that the product should have max-
imized performance rather than energy-efficiency. This requirement is set from
the assignment text. Although this is an important requirement, not meeting
it does not imply that the solution computer is completely useless. A less-than-
optimally performant computer will still be able to solve hard problems, even
if it will do it slower. Because of this, even though this requirement is specifi-
cally mentioned in the assignment text, this requirement is assigned a medium
priority.

FR7

FR7 in table 1.1 on the preceding page states that the instruction set should
contain custom made instructions for faster execution of genetic algorithms.
This requirement is set because it helps setting the focus on high performance.
Another reason for this requirement is that it makes high performance genetic
algorithm programming easier for developers using the computer. This greatly
increases the usability of the computer.

5

Computer Project Barricelli Performance Group

1.2.2 Non-functional Requirements

Requirement Description Priority
NFR1 The system should be built so that the solder-

ing process does not take longer then 8 hours
when done by hand.

High

NFR2 The system should use a Xilinx FPGA. High
NFR3 The system should use an ”Energy Micro” mi-

crocontroller.
High

NFR4 The system should not cost more than 10000
NOK.

High

NFR5 A report detailing the product and process. High
NFR6 A working demo program running a genetic

algorithm.
Medium

NFR7 The system should have a 3D-printed case. Low

Table 1.2: Non-functional Requirements

NFR1

NFR1 in table 1.2 states that the system should be built so that soldering does
not take longer than 8 hours when done by hand. This would also include time
consumed by baking ball grid array (BGA) components. This requirement is
included because hand-soldering and simple BGA baking are the fabrication
techniques readily available to the group without incurring prohibitively large
costs, and is therefore a high priority requirement.

NFR2

NFR2 in table 1.2 states that the system should use a Xilinx FPGA. The assign-
ment text requires that a Xilinx FPGA should be used [16], and the Spartan-6
was chosen. This is a high priority requirement.

NFR3

NFR3 in table 1.2 states that the system should use an ”Energy Micro” micro-
controller [16]. The microcontroller is needed in order to communicate properly
with the FPGA and is a high priority requirement.

NFR4

NFR4 in table 1.2 states that the system should not cost more than 10000 NOK.
This is a requirement specified in the assignment text [16], and is therefore a
high priority requirement.

6

Computer Project Barricelli Performance Group

NFR5

NFR5 in table 1.2 on the previous page states that there should be a report
detailing the product and process. This requirement is perhaps the most im-
portant requirement, as all the other work would have been for nothing if it
were not documented for others to see. In addition, the assignment text states
that the project will be evaluated partially based on the report [16]. This makes
this requirement a high priority requirement.

NFR6

NFR6 in table 1.2 on the preceding page states that there should be a working
demo program running a genetic algorithm on the system computer. Although
this requirement is also specified in the assignment text, it is set for demonstra-
tion purposes. If a working demo program is not produced, it does not imply
that the solution computer is defective. Because of this, this requirement has a
medium priority.

NFR7

NFR7 in table 1.2 on the previous page states that the system should have a
3D-printed case. This requirement has a low priority, as, while it looks good,
provides protective cover for the computer, and increases usability, it is not
crucial for making the computer work.

1.3 Deliverables

Deliverable Description
D1 A functioning version of the computer, with the processor

running on an FPGA.
D2 A working assembler for the instruction set.
D3 A working demo program running a genetic algorithm.
D3 A report detailing the product and process.

Table 1.3: Deliverables

A deliverable is a tangible or intangible object produced as a result of a project
that is intended to be delivered to an other party. In this case, the deliverables
are what this group is handing in as a solution to the assignment stated in
section 1.1.1 on page 2. An overview of the deliverables for this project can be
found in table 1.3. Here follows a short description of each deliverable.

7

Computer Project Barricelli Performance Group

D1

D1 in table 1.3 on the preceding page is the physical manifestation of the Bar-
ricelli computer that was designed for this project.

D2

D2 in table 1.3 on the previous page is Galapagos Assembler, a modular Gala-
pagos assembler written in python.

D3

D3 in table 1.3 on the preceding page is a collection of programs written in
Galapagos assembly for the Barricelli computer, demonstrating its usefulness as
a genetics algorithm solver, and also as a general computer.

D4

D4 in table 1.3 on the previous page is this report.

1.4 About the Name

Barricelli is the name of the solution computer presented in this report. The
computer is named after Nils Aall Barricelli, who was a Norwegian-Italian 20th
century mathematician. Barricelli the mathematician was a pioneer in artifi-
cial life research, and he performed early computer-assisted experiments in the
symbiogenesis and evolution fields. It is in recognition of Barricelli the mathe-
matician’s groundbreaking seminal work that Barricelli the computer takes its
name. [15]

1.5 Structure of this Report

This report is structured as follows:

Chapter 1 introduces the assignment and its interpretation. It also details the
goals and requirements set for the project.

Chapter 2 aims to give the reader some general insight into the science and
principles behind the project. Additionally, it defines the related terms used
throughout this report.

Chapter 3 contains a bird’s-eye overview of the overall system architecture and
its major components.

Chapter 4 gives an in depth explanation of the processor architecture, its spe-
cialized features and most important components.

8

Computer Project Barricelli Performance Group

Chapter 5 details the design choices taken for the different hardware components
and the layout of the PCB.

Chapter 6 describes the communication means between the processor on the
FPGA and the different input and output devices through the microcontroller.

Chapter 7 covers the remaining major components of the system that does not
fit within the above categories.

Chapter 8 contains the different test cases used to verify the correctness of the
implementation for the different components.

Chapter 9 presents the results from simulations, performance tests and energy
measurements of the processor and its components.

Chapter 10 discusses the results of the tests and measurements.

Chapter 11 presents the work process throughout the whole development, im-
plementation and testing stages.

Chapter 12 states the conclusion for the project, as well as possible further work
and improvements.

Finally, there is a glossary for uncommon terms followed by appendices.

9

CHAPTER

2

BACKGROUND

This chapter aims to put this report in context by providing a brief overview of
some of the central concepts of the Barricelli computer.

2.1 MIMD Computing

Barricelli, the solution computer presented in this report, is a MIMD com-
puter. MIMD, or Multiple Instruction, Multiple Data, is a class of computer
architectures involving multiple autonomous computing units executing differ-
ent instructions on different data. Thus, a MIMD computer system consists of
several fully independent processing units or cores, interconnected in some way.
Each core/processor is able to work fully independently and asynchronously
with their counterparts. Because of this MIMD lends itself quite well to high
performance computing through parallelism.

Communication between the different, possibly heterogeneous independent com-
puting units is either done by message passing, or sharing memory between pro-
cessors. Computers that solve communication using message passing might not
have any shared memory between the processing units at all. Each processing
unit instead holds its own private memory. This is called a distributed memory
model. Most MIMD computers implement some hybrid memory solution using
both shared memory and distributed memory.

A simplified block-level overview of a MIMD computer can be seen in figure 2.1
on the following page. The computer in the figure uses a shared memory model.
In the figure, the blocks labeled PU are individual processing units.

10

Computer Project Barricelli Performance Group

D
at

a
P

oo
l

Instruction Pool

PU

PU

PU

PU

PU

PU

PU

PU

MIMD

Figure 2.1: Block-level overview of a MIMD computer with a shared memory
model. Reproduced from http://en.wikipedia.org/wiki/File:MIMD.svg.

MIMD architecture forms the basis in the great majority all today’s multi-core
super scalar processors. This is in contrast to the early uniprocessors, which
were based on SISD, or Single Instruction stream, Single Data stream.

Examples of well-known MIMD computing platforms today include Intel’s Larrabee
platform, and computer clusters connected for instance over the internet.

2.2 Genetic Algorithms

Searching is a well known problem in computer science, because it can be used
to solve many other problems. It is possible to search through a collection of
solutions to a problem, rather than finding the correct one by traditional means.
This collection is known as the Search space. It is generally easier to verify that a
given solution to a hard problem is correct than finding the solution. A heuristic
search tries to make the search more intelligent than looking at each parameter
and comparing it to the other.

A genetic algorithm is a specific type of heuristic search algorithm that is very
useful for finding approximate solutions for hard optimization and search prob-
lems. A hard problem in this context is a problem for which there exists no
algorithm for feasibly computing a solution within a reasonable amount of time.
In practice, this typically means NP-hard problems. Classical examples of
hard problems for which genetic algorithms can find suitable approximations
include the Satisfiability Problem, the Traveling Salesman Problem and the
Binary Knapsack Problem, to name a few. Efficiently finding good approxima-
tions to this class of problems is extremely important for many heavy industry
processes such as planning and scheduling of processes, finding optimal place-
ment and routing of components in microchip manufacturing, and many other
business-critical tasks.

11

http://en.wikipedia.org/wiki/File:MIMD.svg

Computer Project Barricelli Performance Group

The distinguishing feature of a genetic algorithm compared to other heuristic
search algorithms is how it performs its search: it mimics the natural process of
evolution to find fit approximations within the search space. A genetic algorithm
represents possible solutions to a given problem as individuals of a population.
The individuals’ fitness is calculated by a problem-specific fitness function, and
fit individuals are combined together to create new individuals, mimicking the
process of natural selection. The idea is that after simulating a number of virtual
generations of individuals, the fittest individual will have survived, and provides
a good approximation to the solution.

2.2.1 Concepts and Definitions

To fully understand the inner workings of the Barricelli, it is useful to become
acquainted with the basic concepts of genetic algorithms. This subsection of
the document defines some genetic algorithm concepts that are used elsewhere
in the report.

Experiment An attempt at solving a problem using a genetic algorithm.

Individual One possible solution (good or bad) to a given problem.

Population The group of individuals in a given experiment.

Fitness An evaluation of how close an individual is to the theoretically perfect
individual. It is calculated by an objective rating function.

Selection Probabilistic selection of rated individuals allowed to reproduce.
The probability of picking a certain individual is typically proportional to its
fitness rating.

Crossover The combination of individuals (parents) in some way to form a
new individual (child). Also called reproduction.

Mutation Mutation of an individual. It is either random or based on problem-
specific rules.

2.2.2 Pseudo-code for a General Genetic Algorithm

Algorithm 1 on the next page shows example pseudo code for a general genetic
algorithm.

12

Computer Project Barricelli Performance Group

Data: A population of random individuals
Result: A quite fit individual
begin

k ←− 0
Pk ←− a population of n randomly-generated individuals
Compute fitness(i) for each i ∈ Pk

while max(fitness(i), i ∈ Pk) < threshold AND k < maxIterations
do

Selection:
Select (1− xi)× n members of Pk and insert them into Pk+1

Crossover:
Select xi × n members of Pk, pair them up, produce offspring,
insert offspring into Pk+1

Mutation:
Mutate µ× n members of Pk+1

Compute fitness(i) for each i ∈ Pk+1

k ←− k + 1
end
return the fittest individual in Pk

end
Algorithm 1: Generic genetic algorithm

2.2.3 Generational Genetic Algorithms

Traditionally, genetic algorithms are implemented with discrete generations [17]
This means that after a loop in the genetic algorithm, a completely new gen-
eration has been created by crossover and mutation. The original population
is replaced with the new one, and the algorithm continues only with the new
population.

Generational genetic algorithms can be seen as performing these steps:

1. Start with an initial population

2. Calculate the fitness of each individual in the generation

3. Selection

4. Crossover

5. Mutation

6. Loop back to step 2 with a newly created population.

The initial population is normally made from randomly generated individuals.
The diversity ensures that it is possible for the generation to evolve towards
a solution without getting stuck in an early local maxima. In the next stage
the fitness of each individual calculated, which is very specific for the problem
at hand. If this fitness values exceeds some specified threshold, the solution is
deemed good enough and the algorithm stops. Note that it will not always find
a perfect solution, but one that is sufficient for the problem at hand. If however
none of the individuals end up with a fitness value above the threshold, the
algorithm continues.

13

Computer Project Barricelli Performance Group

The solution is found during several phases though a selection, crossover and a
mutation phase. These phases are used to evolve the population through several
generations until an appropriate solution is found.

The selection step aims to choose individuals for reproduction based on their
fitness score, meaning that a higher score gives a higher propability of being
chosen. However, this does not necessary mean that only the fittest individuals
are allowed to reproduce. An important concept of the genetic algorithm is to
achieve diversity while exploring the different solutions. Diversity is important
to prevent the algorithm from reaching what is known as a local maximum, a
result that has a comparative high fitness score for the immediate region in the
Search space.

A sort of evolutionary dead-end, a stage where the solution found is far from
optimal but discovering a more optimal one would require several generations
of devolving (selecting individuals with non-max fitness from the current popu-
lation’s descendents).

In the crossover phase individuals from the selection are crossed to produce new
individuals. Because of the initial diversity in the initial population, this will
cause the diversity to be large in the beginning. However they will eventually
converge. The goal of the crossover phase is to converge against a solution by
continuously creating a better generation of individuals. There are several meth-
ods for achieving the crossover of individuals, however, the different methods
will not be discussed in great detail here. The different algorithms are highly
dependent on the task at hand. However, the different crossover methods im-
plemented in the employed in the Galapagos architecture will be discussed in
greater detail in section 4.3.6 on page 45.

As a precaution, the individuals are passed through yet another phase: muta-
tion. The goal of the mutation is to ensure diversity by randomly mutating
the individuals by some probability. The mutation process is usually a simple
one that just modifies some of the bits in the individual. As with the crossover
method, algorithms also exist for performing the mutation.

Lastly, it is important to mention that there exists a lot of different classes of
genetic algorithms. They usually employ many different techniques for perform-
ing selection, crossover and mutation. The point of this project is not covering
all of them. In fact, only a subset of problems will be supported on Galapagos
architecture.

2.2.4 Steady State Genetic Algorithms

Steady state genetic algorithms do away with the concept of discrete generations.
Rather they continuously select a few individuals, process and return them (or
their offspring) to the population. Older members of the population eventually
disappear, based on some selection scheme, preventing the population from
growing infinitely large. This erases the generational border, and has been
shown to converge faster towards an optimal solution. More specifically it allows
the algorithm a possible way to work on both rated and unrated individuals at

14

Computer Project Barricelli Performance Group

the same time.[14] This approach is more suited for MIMD architectures, such
as the architecture demonstrated in this project.

As steady state algorithms are faster and fitting for MIMD, it was chosen as
the main algorithmic goal for the project.

15

Part II

Design and Implementation

16

CHAPTER

3

SYSTEM OVERVIEW

3.1 Application

The Barricelli computer, which is pictured in Figure is a computer designed for
solving problems using genetic algorithms. An example of this can for instance
be the Knapsack problem that is described in the results section in chapter 9.
It is highly optimized for problems for which it is possible to express individuals
in 64 bits or less. The Barricelli can be controlled through one of its external
communication channels, such as USB, but can also be commandeered through
the built-in buttons and LEDs.

3.2 System Architecture

This section aims to provide a bird’s-eye view of the system architecture of the
Barricelli computer.

17

Computer Project Barricelli Performance Group

Figure 3.1: System Overview

The requirements in section 1.2 on page 4 state that the Barricelli should use an
FPGA and a microcontroller as system components. The Barricelli’s specialized
CPU design is implemented and compiled onto an FPGA, and a microcontroller
is used to facilitate Input/Output, control and communications between the
FPGA and the outside world. A graphical overview illustrating the system
architecture can be found in figure 3.1.

3.3 Components

This section contains a list of the components in figure 3.1, documenting their
roles in the system architecture.

3.3.1 FPGA

The FPGA is a Xilinx Spartan6 LX45 Field-Programmable Gate Array, which
is a microchip that can be programmed to behave like any arbitrary intergrated
circuit. The FPGA is programmed to contain an implementation of the custom
Galapagos Processor Architecture designed for the Barricelli computer. It is
connected to the SCU by a 41-bit wide bus, though which the processor can
be programmed by users. The FPGA is connected to its own external SRAM
memory.

3.3.2 SCU

The SCU, or System Control Unit, is an Energy Micro EFM32GG390F1024-
BGA112 microcontroller which administrates communication between the FPGA
and the outside world. It is the SCU’s job to react to user input, to program the
custom processor implemented on the FPGA and to perform other administra-
tive duties. Having a separate microcontroller to perform these tasks minimizes

18

Computer Project Barricelli Performance Group

the complexity of the design implemented on the FPGA, which means that more
resources can be used to create a performant and clean custom processor design.

While only one input and one output are strictly needed to meet the functional
requirements, multiple different types of input have been added to the design in
the name of safety through redundancy. The different inputs and outputs are
listed in the following subsections.

USB

Universal Serial Bus is a bus interface used to facilitate the communication be-
tween Barricelli and a host computer. USB support has become very widespread,
to the point where it is difficult to find a computer without several USB ports,
and was a natural choice for a main communication link. Another important
reason for choosing USB was because of the large number of software libraries
and examples available.

TIA-232

TIA-232, more commonly known as RS-232, is a set of standards defining com-
munication over what is commonly known as serial ports. The serial link is
an old standard and a comparatively slow way to transfer data, so it is mainly
included as a fallback in case the USB link should fail.

SD

Secure Digital (SD) is a memory-card format chosen as a secondary backup
as communications channel between the developers and the microcontroller.
Should both the USB and serial ports fail, an SD card could be loaded with the
desired instruction and data memory and be read by the microcontroller as if
it was a bus.

LEDs

The simplest way to get output from the microcontroller is to use LEDs, short
for Light-Emitting Diode. There are a total of 16 LEDs which can be used to
display status from the IO controller, or simply show that the IO controller is
working on something.

Buttons

Buttons is the fastest and simplest way of having some form of user input on
the board. The buttons allow the user to interact with the program running on
the SCU without requiring some external IO.

19

Computer Project Barricelli Performance Group

3.3.3 Memory

The Galapagos CPU is connected to two separate external memories, the in-
struction memory and the data memory. This separation means that the Gala-
pagos architecture is a Harvard machine. This design choice was made because
it increases the performance of the machine, since instruction memory and data
memory can be accessed independently, and in parallel.

Instruction Memory

The Instruction Memory, labeled as “INST MEM” in figure 3.1 on page 18, is
the memory that holds the program instructions for the processing units in the
Barricelli running on the FPGA. The memory is read-only for the processors
in the FPGA, but can be written to by the SCU. The instruction memory is
shared by all the processing units in the FPGA.

Data Memory

The Data Memory, labeled as “DATA MEM” in figure 3.1 on page 18, is the
memory that holds processing data for the processors in the FPGA. The memory
can be read by both the processing units in the FPGA, and the SCU. The data
memory is shared by all the processing units in the FPGA.

20

CHAPTER

4

PROCESSOR DESIGN

The Barricelli computer features a custom processor design. The processor is a
MIMD processor designed for high performance genetic algorithms computing.
This chapter describes the processor architecture and documents the design
decisions made.

4.1 Initial requirement

The assignment requires the development of a MIMD processor architecture.
Therefore, the main requirement is to be able to run multiple instruction streams
working on multiple data streams.

The designed computer should be able to solve a limited set of genetic problems.
The aim of the design is to achieve high performance of the evaluation of genetic
problems by designing a highly specialized MIMD architecture. The resulting
architecture aims to tackle the given problems with high performance, and high
utilization of resources.

4.1.1 Parallelism

The Barricelli is a MIMD computer, which means that it can execute multiple
different instruction streams on multiple different data streams simultaneously,
in parallel. The cores in the archtecture have each their own program counters
and may load different data independently of each other. The cores share the
same data and instruction memory, however, which makes the Barricelli a shared
memory model MIMD computer.

21

Computer Project Barricelli Performance Group

4.2 Instruction Set Architecture

The Galapagos Instruction Set Architecture is the instruction set architecture
designed for the Barricelli computer for this project. The architecture is loosely
based on the well-known and tested MIPS architecture, but borrows inspiration
from many other different sources as well. Especially inspirational for the design
of the Galapagos ISA have been the MIPS core design principles, which can be
found in table 4.1.

Design principle 1 Simplicity favours regularity. [13, p. 79].
Design principle 2 Smaller is faster. [13, p. 81]
Design principle 3 Make the common case fast. [13, p. 86]

Table 4.1: MIPS Design Principles

The Galapagos ISA was designed and fully specified quite early in the project,
which made it an important resource for the rest of the component design pro-
cess.

While the ISA is thoroughly documented in appendix A on page 119, the rest
of this section will present a short overview for the reader’s convenience.

The Galapagos instruction set architecture is a RISC architecture. The instruc-
tions are kept simple, and only perform very specific and small tasks. That is,
the instructions are low-level instructions executed directly in hardware without
the need for additional decoding in form of microinstructions or the like.

4.2.1 Instruction Formats

As MIPS, Galapagos, in true RISC fashion, has relatively few instruction for-
mats. These instruction formats are constructed to be regular, which implies
that the different information types contained in an instruction are located in
the same positions whenever possible. This makes the instruction decoding
process in the processor much simpler. This is done in accordance with design
principle 1 of table 4.1.

The three instruction formats used in Galapagos are the RRR, RRI and RI
formats. They are named after the types of data they contain. RRR contains
three register addresses. RRI contains two register addresses and one immediate.
RI contains one register address and a larger immediate.

Every instruction has a set of conditional flags that may be set. Through these
flags, a programmer can decide whether or not an instruction will be executed.
This allows for branchless conditional execution of single instructions. These
conditional signals allow for many clever applications - a nop instruction can
be implemented as any instruction with the condition set to “never execute”.
Indeed, even conditional branching is implemented as a branch-less conditional!
For a more detailed documentation of the Galapagos instruction set architecture,
the reader is encouraged to read appendix A on page 119.

22

Computer Project Barricelli Performance Group

4.2.2 Genetics Instructions

One of the requirements in section 1.2 on page 4 was that the ISA should
support genetic-specific instructions to facilitate performant genetic algorithms
programming. Present in the Galapagos ISA are the genetic instructions ldg,
stg and setg. They are the instructions for loading and storing individuals to
the genetics accelerator, and configuring the genetics accelerator, respectively.
With these instructions available to the programmer, using the genetics accel-
erator is easy and painless. The reader may refer to the ISA documentation
in appendix A on page 119 for in-depth documentation about how the genetics
instructions are used.

4.3 Processor Architecture

Figure 4.1: Processor Architecture

Figure 4.1 shows the final processor architecture. Most of the figures seen in
this picture as for instance ”fitness core”, are abstractions of more complex logic
at lower levels (mostly MSI and LSI components). The processor architecture
designed for the Barricelli computer is a very clean design, and the key to its
high performance lies in its simplicity. The architecture contains a number
of general cores, which in this context are named fitness cores. The fitness
cores are general purpose cores in the sense that they are programmable and
Turing complete, but for genetic algorithm applications the cores are intended
to calculate fitness scores of individuals.

23

Computer Project Barricelli Performance Group

The number of fitness cores is configurable. The reference implementation of
the Barricelli computer is configured to have 7 fitness cores.

Common genetic algorithms operations are performed by a separate hardware
accelerator pipeline. This accelerator consists of several operation-specific spe-
cial cores for selection, crossover and mutation. The fitness cores and the genetic
pipeline are all connected to a single data bus. To avoid any memory synchro-
nization issues the data bus is controlled by a central arbitration unit.

The processor architecture is illustrated in figure 4.1 on the preceding page.

4.3.1 Instruction Memory

The Barricelli is a Harvard machine. Because of this the memory is split into in-
struction and data memory. This is done to achieve better memory throughput,
because both memories can be accessed simultaneously. The instruction mem-
ory is organized in a two layer memory hierarchy, with slower external memory
(SRAM) and faster, internal on-chip caches (BRAM). This separation combines
the high instruction throughput of fast on-board memory with the comfortably
spacious data storage capabilities of a larger, slower chip external chip.

Each fitness core has its own private instruction memory cache which buffers
instructions to decrease the number of slow memory accesses needed during
run-time. Access to an instruction cache is handled by a fitness core’s dedicated
cache controller, which is responsible for locating and transferring instructions
from the instruction memory. In case of a cache miss, the data-requesting core
is halted until the instruction is transferred from memory. A pseudo-algorithm
describing the cache fetch operation can be found in algorithm 2. This scheme
is created to resolve the conflicts that arise from using shared memory.

Data: a = an instruction address
Ci = an array of instructions
Ca = an array of the corresponding addresses
M = the instruction memory, indexable by instruction addresses

Result: The instruction at address a
begin

if a = Ca[A mod 512] then
return Ci[A mod 512]

end
else

Caa mod 512]←− a
Ci[a mod 512]←−M [a]
return Ci[A mod 512]

end

end
Algorithm 2: Fetching an instruction from the cache

24

Computer Project Barricelli Performance Group

4.3.2 Data Memory

The Galapagos architecture is a MIMD architecture with shared memory. In the
Barricelli computer, a central memory controller is responsible for synchronizing
memory access on the shared data bus. Each component that wants to access
memory must go through the memory controller, and follow the proper memory
access request protocol. The controller is constructed in a way that only allows
one fitness core to be able to carry out a memory request at a single time. In
case of multiple memory requests, the controller performs a selection deciding
in which order the requesting cores is granted the bus. The precise technique of
selection can be seen in algorithm 3. This may introduce a potential bottleneck
for memory-bound problems. For this reason, each fitness core has a generous
31 general purpose registers, which should reduce the data memory load quite
a bit.

Data: Requests = requests signals from the fitness cores
Request = 2-bits specifying the operation

begin
Requests←− requests from the fitness cores
while True do

for request in Requests do
if request = asserted then

performMemoryOperation()
end

end

end

end
Algorithm 3: Round-robin selection

The selection algorithm is based on round-robin scheduling. The request signals
of fitness cores are checked in turn to check if one of the cores has requested the
memory bus. The type of request is determined by combination of two request
signals sent by each fitness core. The signals refer to either a NOP, READ,
or WRITE operation. In case of NOP, the algorithm moves on to check the
next state request lines. It continues doing this in this fashion until a READ or
WRITE request is encountered.

When a READ or WRITE operation is encountered, the data controller starts
to carry out the request from the fitness core. Performing a memory operation
takes at least four cycles, as the processor word size is 64 bits, while the memory
bus to the external memory chips are only 16 bits wide. Because of this, data
needs to be shuffled across the bus 16-bits at a time, which accounts for the four
cycle minimum for data operations.

For the external memory to be operated correctly by the memory controller,
the proper control signals need to be set at the correct times. The signals
required differs depending on the type of operation, READ or WRITE. The
timing diagrams can be seen in figure 4.2 and 4.3, respectively.

25

Computer Project Barricelli Performance Group

Clock

Request

Ack

Proc address Address

Proc data out Data (63-0)

Mem address Address & 00 Address & 01 Address & 10 Address & 11

Enable

Write

Upper byte

Lower byte

Mem data in Data (63-48) Data (47-32) Data (31-16) Data (15-0)

Figure 4.2: Data memory read cycle

Clock

Request

Ack

Proc address Address

Proc data in Data (63-0)

Mem address Address & 00 Address & 01 Address & 10 Address & 11

Enable

Write

Upper byte

Lower byte

Mem data out Data (63-48) Data (47-32) Data (31-16) Data (15-0)

Figure 4.3: Data memory write cycle

As is immediately apparent in figures 4.2 and 4.3, the number of cycles required
for load and store operations are are 5 and 13 cycles, respectively. A state
machine is implemented in the data memory controller to handle interfacing
with the external memory chips. This state machine is responsible for controlling
that the different signals are set according to the diagrams. For more detailed
view of the Data memory controller, the reader is advised to study the state
machine diagram in figure 4.4 and the accompanying data path in figure 4.5.

26

Computer Project Barricelli Performance Group

Figure 4.4: Data memory controller state machine

27

Computer Project Barricelli Performance Group

Figure 4.5: Data memory controller signals mapping

28

Computer Project Barricelli Performance Group

4.3.3 Rated and Unrated Pools

In the beginning and the end of the genetics accelerator pipeline lie the rated
and the unrated pools, respectively. The rated and unrated pools are caches of
genetics individuals that waiting to either 1) get selected and be sent through
the pipeline, 2) die, or 3) get picked up by a fitness core for fitness ranking.
The rated pool contains individuals stored with a fitness score, and are the
individuals that have just been inserted into the accelerator by a fitness core.
The unrated pool contains individuals that have no fitness score calculated.
They are the new individuals produced by the accelerator pipeline, and are
waiting to be picked up and rated by a fitness core.

The rated and unrated pools are implemented in BRAM on the FPGA for as fast
access times as possible. This is essential to achieve a high memory throughput
when executing the algorithms.

It is important to note that the two pools are designed as separate BRAM
devices. This is done to achieve even better memory throughput. The increased
throughput is achieved because the different computational units can work on
the rated and unrated pools simultaneously. For instance while one fitness
core is storing a ranked individual, another fitness core may be fetching a new
individual for ranking.

Access to the Rated pool and the unrated controller is managed by control units
referred to as the rated controller and the unrated controller. As with the data
controller for data memory access, these controllers are responsible for granting
access to the rated and unrated pools. As shown in figure 4.12 on page 46,
the genetics accelerator has its own data buses connected to the fitness cores
separate from the data bus that is connected to the regular shared data memory,
to increase performance by reducing bus conflicts.

The controllers are based on the same principles as the data controller described
in section 4.3.2 on page 25. When in need of performing genetic operations, the
fitness cores need to request the data bus by setting some request signals. The
combination of these signals refer to the operation the fitness core requests from
the genetic controller.

The controllers continuously perform simple round-robin request handling schemes
in order to grant bus access to the next requesting fitness cores, and to the ge-
netic pipeline. The logic for the rated controller is implemented as a state
machine, while the unrated controller’s simple structure allows it not have one
at all.

As the timing diagrams in figure 4.6 on the following page and 4.7 on the next
page show, both controllers are highly optimized for speed. The single occasion
where the bus is unused is the cycle in which the Genetic controller tells the
rated controller that it no longer requires access.

29

Computer Project Barricelli Performance Group

Clock

Request G

Ack G

Request 0

Ack 0

Addr Ctrl A K+0

Addr Ctrl B K+1

Addr A A0+0 A0+1 AN+0 AN+1

Addr B B0+0 B0+1 BN+0 BN+1

Data Out A Fitness Gene Fitness Gene Fitness

Data Out B Fitness Gene Fitness Gene

Data In Fitness Gene

Write A

Write B

Figure 4.6: Fitness values and individuals being read by the selection cores
followed by a fitness core writing a new fitness and individual.

Clock

Request G

Ack G

Request 0

Ack 0

Addr C

Addr G

Data In

Data Out

Write Enable

Figure 4.7: A two-individual selection core access

4.3.4 PRNG Module

A key component in any genetic algorithm is a decent source of (pseudo-)random
numbers. Genetic algorithms require diversity in the individuals to prevent
reaching a local maximum, as discussed in section 2.2.3. To achieve this, the
architecture need to support a way to produce random numbers for the genetic
pipeline.

The Barricelli computer has a hardware pseudo-random number generator mod-
ule built into its genetics accelerator.

When designing a pseudo-random number generator, there is always a trade-off
between generating “good” random numbers, and generating them quickly. As
the group have high performance as a design goal as described in the introduc-
tion, it was desirable to design a pseudo-random number generator that is as
fast as possible while still being usable for genetic algorithms.

30

Computer Project Barricelli Performance Group

The pseudo-random number generator uses a linear shift feedback-based taps
algorithm to efficiently generate random numbers.

The design is inspired by the implementation made by Raymond Sung, Andrew
Sung, Patrick Chan, and Jason Mah 1.

This algorithm is shown in algorithm 4.

Data:
LFSR = a 32-bit linear shift feedback register containing the previous
random number
taps = ”01000110000000000000000100000000”
Result: A new random number
begin

feedback ←− LFSR[31]
for i from 31 to 0, non-inclusive do

if taps[i - 1] = 1 then
LFSR[i]←− LFSR[i− 1]⊕ feedback

end
else

LFSR[i]←− LFSR[i− 1]
end

end
LFSR[0] = feedback
return LFSR

end
Algorithm 4: Pseudo-random number generation algorithm

4.3.5 Fitness Core

The fitness core in the processor architecture is the general processing core. For
genetic algorithms, the fitness core is tasked with calculating fitness scores for
individuals, hence the name.

The design of the fitness core is highly influenced by the classic pipelined MIPS
core design [13, p. 362]. The core is designed as a five stage pipeline. The
contents of the different stages in the pipeline, however, differs from the original
MIPS architecture, as the CPU architecture has to accommodate for the ISA
design which combines ideas from multiple existing architectures. An example
of an ISA feature which differs from MIPS is the embedded branch-less condi-
tionals2. An overview of the data path can be seen in figure 4.8 on the next
page.

1http://www.ece.ualberta.ca/ elliott/ee552/studentAppNotes/1999f/Drivers Ed/lfsr.html
2a feature which is shamelessly ripped whole-sale from ARM

31

Computer Project Barricelli Performance Group

Figure 4.8: Architecture block diagram

The core is separated into several distinguishable stages referred to as the fetch
stage, decode stage, execution stage, memory stage and write-back stage. These
stages overlap in time and perform different tasks regarding the execution of
instructions. The fetch stage is responsible for fetching a new instruction to the
pipeline. The decode stage is responsible for decoding the instruction and set
up the different control signals. The execution stage is involved in the actual
computation of the instruction. The memory stage is responsible for performing
memory related task on behalf of the instruction. The write-back stage is used
to write data back into registers.

32

Computer Project Barricelli Performance Group

Data Path

The data path is simple. All instructions have the same length. This makes
it easier to fetch the instruction in the first stage and decode it in the second.
Also, the ISA only supports three different instructions classes with the register
mappings located on the same positions. This allows the register file to be read
on the same time as the control unit determines the correct control signals for
that particular instruction. This allows for a shorter pipeline. If the instruction
format was asymmetric, the instruction would have to split the register file and
decode stage in two stages. A bigger pipeline would imply higher risk for pipeline
hazards, and a more complicated hazard detection and correction schemes.

The Barricelli computer is a load/store machine. There is no preconception
of a program stack at the hardware level. This simplifies the execution and
memory interaction. Note that memory operands only appear in load and store
instructions. This implies that the execution stages is responsible for calculating
the memory address and that the memory access can happen in the following
stage. Allowing the ALU to operate on operands in memory would expand the
address stage, memory stage and the execution stage [13, p. 335]. The resulting
architecture would involve a deeper pipeline.

The MIPS inspired pipeline allows the design to be simple, but still powerful. It
will increase performance by effectively increasing the instruction throughput.
Note that instruction throughput is an important metric because real applica-
tions execute millions of instructions [13, p. 335]

The group decided that the overall design should be as simple as possible. Haz-
ard and branching schemes are kept simple. Hazards are resolved with the
forwarding unit, which forwards data if dependencies are detected. Branching
are resolved with use of conditional codes in each instructions. The reader may
refer to their respective sections for more details.

The fitness core features “branch not taken” branch prediction, which means
that it assumes that conditional jumps will not be executed. This gives a nice
performance increase, because the pipeline does not have to be flushed when the
branch is correctly predicted. More advanced features like instruction reschedul-
ing have not been implemented.

33

Computer Project Barricelli Performance Group

Control Unit

The control unit is the “puppet master” of the processor, so to speak. Residing
in the instruction decode stage, it is responsible for configuring all the different
components for the current CPU operation so that the desired computation
will emerge from the flow of data. The control unit achieves this by setting the
relevant control signals of the relevant components to the values associated with
the current instruction. Note that different instruction classes requires different
use of the data path. Thus, combinations the control signals must accommodate
the different instructions formats. The different instructions classes and their
corresponding control signals can be seen in table 4.2.

The control unit sets up the components based on the FUNCTION CODE and
the OPERATION CODE of the instruction. The FUNCTION CODE is the 4
least significant bits of the instruction, and is responsible for determining the
operation the ALU should perform.

The following paragraphs exhaustively documents and explains the technical
details of each of the control unit’s control signals.

ALU FUNC The ALU FUNC is the least four significant bits of the instruc-
tion, and is responsible for determining the type of operation the ALU should
perform. This are set according to table 4.4

ALU SOURCE The ALU SOURCE signal is used to specify the second
ALU operand. When this signal is asserted the second ALU operand is the
immediate field of the instruction. This implies that the instruction class of the
instruction is either RRI or RI. On the other hand, if this signal is de-asserted,
the operand comes from read register to of the instruction file. Note that this
value may or may not have been forwarded.

REG WRITE This signal specifies whether the write back value residing in
the write-back stage should be written to the register file. When this signal is
asserted, the value from the write-back stage is written to the specified register
address. The register address is specified in the instruction, and always resides
in the RT address field of the instruction.

IMM SOURCE The Galapagos ISA has two different instruction classes (RI,
RRI) that uses different lengths of the immediate field. In order to differentiate
between these immediate fields, the IMM SOURCE signal is responsible for
selecting the correct immediate field based on the instruction class of the current
instruction. The selection is done with a multiplexer. In the case of an RRI
instruction the 10-bits immediate field is selected, and in the case of an RI
instruction, the 19-bits field is chosen.

3Gives input 1 as output.
4Gives input 2 as output.

34

Computer Project Barricelli Performance Group

Control signals
RRR JUMP SW STG

ALU FUNC FUNC ADD ADD NA
ALU SOURCE 0 1 1 0
IMM SOURCE 0 1 1 0
REG SOURCE 0 1 0 0
STORE SOURCE 0 0 1 0
CALL 0 0 0 0
JUMP 0 1 0 0
GENE OP NA NA NA 10
MEM OP NA NA 10 NA
TO REG 01 NA NA NA
REG WRITE 1 0 0 0

RRI LW STI SETG
ALU FUNC FUNC ADD FUNC FUNC
ALU SOURCE 1 1 1 0
IMM SOURCE 0 0 1 0
REG SOURCE 0 0 0 0
STORE SOURCE 0 0 0 0
CALL 0 0 0 0
JUMP 0 0 0 0
GENE OP NA NA NA 11
MEM OP NA 01 NA NA
TO REG 01 11 NA NA
REG WRITE 1 1 0 0

CALL LDI LDG
ALU FUNC ADD ADD NA
ALU SOURCE 1 1 0
IMM SOURCE 1 1 0
REG SOURCE 1 0 0
STORE SOURCE 0 0 0
CALL 1 0 0
JUMP 1 0 0
GENE OP NA NA 01
MEM OP NA NA NA
TO REG NA 01 00
REG WRITE 0 1 1

Table 4.2: Control unit output

35

Computer Project Barricelli Performance Group

Opcode Instruction class
1000 RRR
1100 RRI
0000 LW
0001 SW
0100 LDI
0010 JMP
0011 CALL
0101 STI
1001 LDG
1010 SETG
1011 STG

Table 4.3: Overview of opcodes

FUNC code operation
0000 ADD
0001 SUB
0010 MUL
0011 SRA
0100 OR
0101 AND
0110 XOR
0111 SLL
1000 SRL
1001 OP1 3

1010 OP2 4

1111 NOP

Table 4.4: Overview of function codes

REG SOURCE For JMP and CALL instructions, the immediate address
field of the instruction is added with the address content of Rd. The Rd address
specified in the instruction must be read from the register file. Normally, the
register file would use the Rs and Rt part of the instructions as inputs to the
register file. In the special case of RI instructions the register file must read the
Rd instead of Rs. This is accomplished by asserting the REG SOURCE signal,
which causes a multiplexer to choose the Rd portion of the instruction instead
of the Rs as input to the register file. This will output the content of the correct
data from the register file.

STORE SOURCE For the ST instruction, the register address of the data
to be stored is located in the Rd field of the instruction. Normally, the register
file would use the Rs and Rt part of the instruction as inputs to the register
file. In the special case of a ST instruction the register file must read the Rd
register instead of Rt. This is accomplished by asserting the MEM WRITE
signal, which causes a multiplexor to chose the Rd portion of the instruction
instead of the Rt as input to the register file.

36

Computer Project Barricelli Performance Group

This will output the content of the correct data from the register file. This
ensures that the Rt signal seen in 4.8 contains the content of the Rd register.
This is actually the data that is written to memory.

JUMP The JMP instruction uses the address in the immediate field of the
instruction to load a new value into the program counter register. The jump
signal selects between the jump address and the incremented program counter
when deciding a new value for the program counter at each cycle. In case of
jump, this signal is asserted and the jump address is chosen. When de-asserted
the program counter is set to the incremented program counter, making the
program execute normally. This signal is also asserted when performing call
instructions.

CALL The Galapagos ISA supports non-recursive procedure calls at a hard-
ware level. The call instruction works similar to the jump instruction described
above. The difference is that the incremented value of the program counter
before the jump is stored to register r31, which is conventionally used as a link
register. This value can be used later when returning from the procedure call.
To return from a procedure call, one needs simply to jump back to the address
stored in r31.

The CALL signal is responsible for making sure that the incremented program
counter is stored at register 31. When asserted the signal make sure that the
write register address is changed to 31. If the signal is de-asserted the write
register will stay unmodified, and the Rt register in the instruction is responsible
for specifying the register address.

GENE OP Loading and storing of fitness values and chromosomes is the
responsibility of the genetic controller. This controller is able to perform three
types of actions: load, store and settings, dependent of the instruction class
executed. When performing a load, a chromosome is loaded from the unrated
pool. The store operation is used to store a chromosome and its corresponding
fitness value to the rated pool. The settings are used to apply settings to the
genetic pipeline. In order to divide these cases, the Galapagos architecture relies
on the gene operation vector. This bit-vector is set depending on the instruction
class as seen in table 4.5.

Code Meaning Instruction class
00 NOP OTHER
01 LOAD GENE LDG
10 STORE STG
11 SETTINGS SETG

Table 4.5: Gene operation codes

Depending on the bit-vector-signal, the genetic controller is able to perform the
appropriate action.

37

Computer Project Barricelli Performance Group

MEM OP As with the genetic controller, the memory controller must be
able to distinguish between operations. In case of memory controller, these
operations are loading and storing to and from the external data memory. These
signals are set according to the instruction class currently being executed. An
overview can be found in table 4.6

Code Meaning Instruction class
00 NOP OTHER
01 LOAD DATA LW
10 STORE DATA SW

Table 4.6: Memory operation codes

TO REG In the write-back stage, there is need to distinguish between several
outputs from the memory stage. The TO REG signal is responsible for selecting
which value that should be written to the register file. The selection is aided by
a 4-to-1 multiplexer. The different inputs are: Gene, Data, and PC+1, Res, as
seen in figure. However, keep in mind that the REG WRITE signals must be
asserted for the data to be written.

The TO REG bit-vector are set according to table 4.7

Code Output Instruction class
00 GENE LDG
01 RES OTHER 5

10 PC+1 CALL
11 DATA LW

Table 4.7: 4-to-1 multiplexor output

5OTHERS refers to instructions that store the ALU result to a register

38

Computer Project Barricelli Performance Group

The ALU

The Arithmetic Logic Unit, or ALU, is the heart of the fitness core, colloquially
put. It is responsible for executing scheduled arithmetic and logical operations
on data. The ALU is perhaps the single most important component of the
fitness core.

The ALU in the fitness core is capable of performing a large array of different
mathematical and logical operations on 64-bit words, including addition, sub-
traction, comparisons, shifts and multiplications, in addition to a slew of bitwise
logical operations such as and, or, xor and not. Division is not supported.

On the FPGA, large parts of the ALU is implemented with DSP slices, which
means that dedicated pre-fabricated ALU-specific circuitry is used in place of
regular generic FPGA LUTs for increased performance and space utilization.

Multiplication Multiplication is handled as a special case in the architecture.
The multiplication is designed to use two cycles in the execution stage, rather
than the normal one cycle per operation. This is because the multiplication is
the slowest of the ALU operations, and the maximum clock frequency would
be severely limited, were the multiplication path allowed to become the longest
path. This would result in a degradation of the overall performance of the pro-
cessor, which is not desirable. To overcome this limitation, a state machine is
designed in the execution stage to halt the pipeline when performing multipli-
cation. This effectively makes the multiplication a multi-cycle operation. The
result of this is that the multiplication operation is able to finish without the
rest of the system needing to slow down to accommodate for it, meaning that
the maximum clock speed is not limited by the multiplication circuitry.

Shifters A shifter is a subcomponent within the ALU designed for efficient
generic bit shifting. A shifter can shift an input by M bits, either left or right
unsigned, or right signed. M is set generically when the component is created,
while signal inputs Left and Arith determines type of shift. If Left is set, there
is unsigned shift to left. If Left is not set, but Arith is, then it is a signed shift
to right. Otherwise, the shift is to the right unsigned. If Enable is not set, then
there will be no shift.

ShifterVariables A ShifterVariable consists of a larger set of shifters. It
takes two inputs: One main input I with size N (default 64) to be shifted,
and a count input of size M that determines how many bits to be shifted. M
should be log2 of N. The number of shifters in the ShifterVariable is equal to M
(default 1), and each shifter i may shift the main input by 2i bits, where i is a

number in the range 0 to M-1. Total shift is
∑M−1

i=0 counti ∗ 2i where counti is
bit number i in the count input. For example, if it is 000110, shift of input I is
0 ∗ 25 + 0 ∗ 24 + 0 ∗ 23 + 1 ∗ 22 + 1 ∗ 21 + 0 ∗ 20 = 22 + 21 = 6. This can be seen
in figure 4.9 on the following page

39

Computer Project Barricelli Performance Group

Figure 4.9: Example use of ShifterVariable

The ShifterVariable has also inputs for Left, Arith and Enable for each shifter.
ShifterVariables are not only used in the ALU, but also in the Crossover Core
and Mutation Cores in the Genetics Pipeline.

40

Computer Project Barricelli Performance Group

Forwarding Unit

Since the execution of instructions overlap in the pipeline, there is need for some
mechanism to handle the data dependencies that arise between the instructions.
These dependencies are known as data hazards. They occur when a planned
execution of an instruction cannot happen in that cycle because some data is
not yet available. This problem can be solved in two ways, either by stalling
or forwarding. Stalling, the simplest solution, is done by avoiding the hazard
by stalling until the data becomes available. This is accomplished by inserting
NOPs in the pipeline. Although, this method works, it is unacceptably slow
for a high performance architecture. Since this processor aims to achieve high
performance, stalling is far from optimal. A far better approach is to rely on
register forwarding. In this approach the aim is to resolve the dependencies
by simply forwarding internal resources from one pipeline stage to another, if
needed.

The forwarding logic is implemented by comparing register dependencies of
the currently executing instruction with the other instructions currently flowing
through the pipeline. If the forwarding unit detects a data hazard, it will forward
the appropriate data to the execution stage so it can be used at once. An
overview of the control signals and their meaning can be seen in table. 4.8.

A second, more unconventional forwarding unit is also implemented in the de-
code stage. It forwards data from the write back stage to the decode stage to
solve data hazards caused by a single cycle write delay in the register file that
the regular forwarding unit cannot detect.

Unfortunately, forwarding does not solve all possible data hazards in the pro-
cessor. In the case of a memory load instruction being immediately proceeded
by an instruction dependant on the data fetched from memory, a data hazard
occurs. Since it does not make sense to forward data from memory, this class of
data hazards is resulted by stalling. The Galapagos architecture does not solve
this problem in hardware, but rather in software. The assembler is responsible
for inserting NOP instructions in case of such hazards.

Control signal Meaning

forwardA=00 The first ALU operand is from the register file
forwardA=10 The first ALU operand is from the prior ALU result
forwardA=01 The first ALU operand is either data from memory or an

earlier ALU result

forwardB=00 The second ALU operand is from the register file
forwardB=10 The second ALU operand is from the prior ALU result
forwardB=01 The second ALU operand is either data from memory or

an earlier ALU result

Table 4.8: Forwarding control signals

41

Computer Project Barricelli Performance Group

Conditional Unit

Like ARM, the Galapagos architecture embeds conditional codes in every sin-
gle instruction in order to determine if it should be executed. In Barricelli’s
processor, every instruction is executed, but the conditional codes may disable
the effect of the instruction. The condition unit is responsible for checking the
condition code against the status flags set by the previous instruction, and using
this information to effect the conditional.

42

Computer Project Barricelli Performance Group

Fitness Memory Controller

In order to communicate with the main data controller, each fitness cores con-
tains a small version of the data controller to synchronize the communication
to the main controller. This small controller, referred to as the fitness data
memory controller, is responsible for mediating memory requests between the
data memory controller and the fitness memory controller.

To use the data memory bus, the the fitness memory controller may send a
request signal to the main Data controller. The data controller either handles
this request immediately, or the request is handled when the bus is ready, in
case some other core is currently using the bus. Either way, the requesting
fitness core will halt the pipeline waiting for access to the bus. When the data
controller is ready, it will send out an acknowledgment granting the bus. Upon
receiving the bus, the fitness memory controller is able to use it freely.

In case of a READ operation, the address is put on the address bus. This
address corresponds to a memory position on the external memory. When
receiving this address, the data memory controller, starts fetching the memory
word. During this time the fitness memory controller needs to wait. It stays in a
wait loop unit the data memory controller is finished reading. Note that the bus
to external memory is only 16-bits wide. This implies that four read instructions
are required to read a 64-bits word. When the memory data controller is finished
reading data from memory, the data is put on the data bus, and the can be read
by the fitness core. Then the fitness core is disconnected from both the data
and memory bus and it continuous its execution through the pipeline.

When performing a WRITE operation this is done in the same manner as with
the READ operation. The difference lay in the fact that during a memory write,
the data to be written is put on the outgoing data bus. The fitness core is in
wait state at this moment. When the data is finished writing to memory, the
memory data controller responds with an acknowledgement. The fitness core
continuous with its computation. A state diagram showing this can be seen in
figure 4.10.

Figure 4.10: Fitness memory controller state machine

43

Computer Project Barricelli Performance Group

Fitness Genetic Controller

Analogously to the fitness core, the genetics pipeline also has a separate me-
diating memory controller. This controller is referred to as the fitness genetic
controller. It is more complex than its sibling in the fitness core, since it in-
terfaces with the genetics data controller, which arbitrates two independent
memory stores. This controller is very similar the fitness data controller. The
difference lays in the fact that two values are transferred in case of a WRITE
operation. Note that both the fitness values needs to store both the fitness
value and gene. The protocol is, however, still very similar the fitness memory
controller. The state machine can be seen in figure 4.11.

Figure 4.11: Fitness genetic controller state machine

44

Computer Project Barricelli Performance Group

Halting the Pipeline

In normal computer systems, the time to access the memory is variable. It
depends on the different states of the machine. This imposes a problem when
several cores competes about access to the memory. It is difficult to determine
precisely the times that is actually used to receive the required data. In order
to fix this issue, and to prevent the processor to compute when there is no data,
each interaction with memory is able to halt the processor if need be. The
different situations arise when accessing the instruction memory, data memory,
and the genetic data pools. Their corresponding controllers are able to set a
halt signal before performing the operation. When the one of the halt signals is
asserted, the program counter and the pipeline registers will be halted, ensuring
that the fitness core does not change state prematurely.

4.3.6 The Genetic Pipeline

The Galapagos architecture includes a highly specialized pipeline for perform-
ing genetic operations. The pipeline is based on the observation that selection,
crossover, and mutation works similar for a specific subset of problems. These
can therefore be implemented as hardware accelerators constructed for per-
forming one specific task. Constructing such accelerators should give better
performance. Designing specialized hardware is usually simpler and thereby
more effective than constructing general purpose components. This pipeline
will effectively relieve the general cores, the fitness cores, from performing the
evolution of individuals. The idea is that these will make the fitness cores able
to only focus on the computation of fitness ranking, which is considered com-
putational intensive. In the mean time the genetic pipeline can produce new
data for ranking. These operations could have been performed by the processor,
however, the processor is badly suited for these kind of operations. Note that
the instructions in the pipeline actually uses 5 cycles in order to completely
propagate through the pipeline. It is far better to only use one cycle in order
to complete the one specific operation.

The genetic pipeline is constructed with three types of specialized cores for
performing selection, crossover, and mutation. These are operations that occurs
frequently in genetic algorithms. These are connected to two internal memory
banks on the FPGA, namely the unrated and rated pool.

In the selection core, on the other hand, the core needs to be able to access
the data bus very frequently in order maximize the throughput. Since fitness
calculation can be assumed to be computationally bound, the data bus is more or
less available for the selection core. This allows the genetic pipeline to compute
the chromosomes required for the next step before they are required by the
fitness cores.

A detailed architecture drawing of the genetic pipeline can be seen in figure 4.12

45

Computer Project Barricelli Performance Group

Figure 4.12: Genetic pipeline architecture

Selection Core

The Selection Core is the first of the cores in the genetics accelerator. It is
responsible for selecting appropriate individuals from the rated pool population
in the genetics pipeline and pass them on to the other cores so that they may
operate on them.

The selection core is designed based on a tournament selection algorithm. Tour-
nament selection is a selection scheme that aims to quickly find an individual
with a high score from an unsorted list in a way that does not guarantee that
the selected individual is the one with the highest score. These goals are healthy
goals for a selection algorithm to have when used in a genetic algorithm.

The tournament selection-based selection algorithm is precisely described in
algorithm 5 on the next page. In layman’s terms, it is designed to select a
single individual from a random position in the rated pool. The current best
and the random selected is compared to each other with use of a comparator.
The best chromosome is stored and used in the next tournament round. After
some number of tournaments the current best is transferred to the crossover
core. The selection core is responsible for letting the rest of the genetic pipeline
know when it can fetch the next chromosome.

46

Computer Project Barricelli Performance Group

Data: P = A pool of rated individuals, r = number of rounds in
tournament (configurable, 0 ≤ r ≤ 31)

Result: A selected individual
begin

k ←− 0
bestIndividual←− random individual from P
while k < r do

individual←− random individual from P
if fitness(individual) > fitness(bestIndividual) then

bestIndividual←− individual
end
k ←− k + 1

end
return bestIndividual

end
Algorithm 5: The tournament selection used in the selection core.

The selection core is designed with efficiency in mind. The overall time spent
in the genetic pipeline must be smaller than the time spent ranking the chro-
mosomes. Note that the fitness cores are connected to the same memory bus
as the genetic pipeline. This could potentially lead to a memory bottleneck re-
sulting in starvation. The selection core tries to overcome this fact by reducing
the memory access to a minimum. Note that the selection core has reserved the
memory bus during the ongoing tournament. This implies that port used by the
selection core is unavailable to others during this time. It is designed to not use
the memory more than it absolutely have to. For instance, if the current fitness
value is greater than the fitness value just fetched, the selection core will not
bother fetching the accompanying chromosome. This ensures that the memory
resources are not wasted, and is accomplished with an state machine.

Since the Crossover Core will need two inputs when performing crossover, two
selection cores are implemented on the genetics pipeline.

Crossover Core

The crossover Core is the next part in the genetics accelerator after the selection
cores. Two inputs are forwarded from the two selections cores as ”parents”, and
two outputs are the ”children” of the inputs, containing bits from both parents.
All the bits from both the parents are forwarded in the children, but in some
parts the bit-patterns are switched on the children, based a selected crossover
function and on a random input from the PRNG. Henceforth this is called
crossover.

There are three distinct crossover functions that are implemented: Split, double-
split and XOR.

47

Computer Project Barricelli Performance Group

1

Figure 4.13: Architecture block diagram

1

Figure 4.14: Selection core state machine

48

Computer Project Barricelli Performance Group

Figure 4.15: Crossover split function

Split Function The first function, crossover split, performs crossover from
a selected bit number in the children and until the edge (which is bit number
0). This can be seen in figure 4.15. The values in the parents are represented
with X’s and Y’s, and a single X or Y can have the value 0 or 1, independent
of each other. The bit number for starting crossover is based on the value of a
6-bit input random number, which is provided by the PRNG. This value ranges
from 0 to 63. Figure 4.15 uses the value 001100 as example, and the selected bit
number is 12. The function will perform crossover on bits 12-0 in the children.

Figure 4.16: Masking for split function

The split function was originally implemented by using behavioural description,
but this caused the synthesizer to create many latches. The same problem oc-
curred also for the double-split function. In order to avoid this, the function
now uses a ShifterVariable, that uses a 32-bit number of 1’s as main input, and
the random number for shifting input. This yields an output that consists of 1’s
until the selected bit number, and 0’s on the rest. Figure 4.16 shows an exam-
ple where bit number 6 is selected for where to begin crossover. Bits 6-0 in the
output consist of 0’s, and the rest 1’s. This output is called mask1. Notice that
mask1 has had an extra shift to the left, in order to perform the crossover from
the correct selected bit. The ShifterVariable performs shifting with an input of
1’s, and in this example bit number 6 would be the last bit with value 1, but it
needs to be the first bit with value 0. Therefore, an extra shift is required. Mask2
is set as a negation of mask1, so the bits in mask2 would be 1’s where they would

49

Computer Project Barricelli Performance Group

be 0’s in mask1, and vice versa. Only bits 6-0 would be 1’s in mask2 in the fig-
ure. The output on the children are set by combining the parents and the masks:

child1 ← (parent1 and mask1) or (parent2 and mask2);
child2 ← (parent1 and mask2) or (parent2 and mask1);

Figure 4.17: Crossover double-split function

Double-split Function The second function, crossover double-split, is simi-
lar to the split function, but in addition to having a starting bit for crossover,
it also has an ending bit where the crossover ends, instead of reaching the edge
at bit number 0. PRNG provides with 2 6-bit inputs, random number1 and
random number2, which values select the starting bit and the ending bit for the
crossover. These values range from 0 to 63, and if both are the same, then
crossover will only be performed on one bit.

Figure 4.18: Masking for double-split function

The double-split function uses two ShifterVariables, which take an input each
from the random numbers. The ShifterVariables are used in the same way as
in the split function, but the outputs will differ from each other as to where

50

Computer Project Barricelli Performance Group

the transition from 1’s to 0’s are set. One will have more 1’s than the other
(at least one if both the random numbers are the same). The masks are set
by using XOR-function of these outputs, so that mask1 will have 0’s in both
the MS and the LS portions of bits, but with a area of 1’s between, and mask2
is it’s negation. Figure 4.18 provides such an example, where bits number 14
and 6 are selected. The bits 14-6 in mask1 would be 1’s and the rest 0’s by
using XOR-function with the outputs from the ShifterVariables, and vice versa
in mask2 by setting it as the negation of mask1. The final outputs are set the
same way as in the split function.

Figure 4.19: Crossover XOR function

XOR Function The third function, crossover XOR, performs crossover bit
by bit, based on the 64-bit input random number. For each bit number i in
random number that has the value 1, the function will perform crossover on
the children at the same bit number i. This function is called XOR because of
use of XOR-gates in earlier version of the function, and the principle is still the
same: For each bit number i in the child, the value will the bit number i from
one and only one parent. And which parent it is depends on the value of bit
number i in random number.

Crossover Core Toplevel The crossover core is implemented on the genetics
accelerator as a toplevel containing 3 subcores, one for each function, as well
as a fourth path with no crossover. In addition to the two parent inputs and
64-bit input random number, the toplevel has a control number input used for
determining which crossover function is to be used: Split, doublesplit, xor,
”party mode” or no crossover at all. Party mode is choosing crossover function
at random, based on the 2 LS bits in the random number. In this way, whenever
inputs are sent through the crossover toplevel, different functions may be used
at different times. These are the control values:

• 000 - Split

• 001 - Double-split

• 010 - XOR

• 011 - No crossover

• 1XX - Party mode, in which case these are the random control values:

51

Computer Project Barricelli Performance Group

– 00 - Split

– 01 - Doublesplit

– 10 - XOR

– 11 - No crossover

Mutation Core

The mutation core is the final part in the genetics accelerator. The mutation
core takes in a forwarded child from the crossover core as input and may perform
mutation on a few selected bits before passing on the result.

Figure 4.20: Mutation core function concept

In addition to the the 64-bit child, the mutation core also takes in a ran-
dom number and a chance input as inputs. The random number is used for
performing mutation, like allowing mutations, setting how many mutations will
occur, and where, while the chance input is used to configure the chance of it to
happen, or how often mutations happen on an avarage level. Default size P for
chance input is 6, and P + 26 for the random number is 32. As it can be seen
in the abstract example in figure 4.20, all bits that are not mutated are repre-
sented by an A, and mutated bits are represented with M. The values in each A
or M can be 0 or 1, independent of each other. The value M at bit number i is
the opposite of the original value A at same bit number i in the input. The P
first bits in the random number is compared to the chance input, and mutation
happens only if the value of these bits are less than the chance input. The ex-
ample in figure 4.20 uses default size of P, so the sizes of the chance input and
the random number are 6 and 32. For each different value in chance input, the
user may increase or decrease the chance of mutation by about 1,6%, or (1/26).
If the value is 001100, then there is 18.75% or (12/26) chance for mutation. If
the chance input is set to 000000, no mutation will ever happen, and the user
may in this way fully disable the mutation core. In the final product, P is set
to 8, so the sizes are 8 and 34, and the chance can be increased or decreased by
about 0,4%, or (1/28) for each value. The next two bits in the random number
(bits 25-24) are used to determine how many mutations will happen. There are
4 different values, therefore there can be 1-4 mutations. The next 24 bits are
used to determine which bits are to be mutated. 6 bits are used for finding

52

Computer Project Barricelli Performance Group

each bit number. This is similar to what is done in the split and double-split
functions in the crossover core. These values are numbered, representing their
bit field:

• Nr. 1: 5-0

• Nr. 2: 11-6

• Nr. 3: 17-12

• Nr. 4: 23-18

These are numbered after the amount of allowed mutation. Nr. 1 will al-
ways happen when a mutation occurs, while nr. 4 happens only when the
amount number allows for 4 mutations.

Note that if more than one of these numbers point to the same bit to be mutated,
the output M will still be the inverted from the original input. For instance, if
both numbers 1 and 2 (bits 11-6 and 5-0) have the value 000110, and therefore
point at bit number 6, the same mutation will still happen as if only one of
these numbers were 000110. If the input bit was 1, the mutated output will be
0, and vice versa. In the example provided in figure 4.20, the 6 first bits of the
random number are less than the chance input, therefore a mutation happens.
Bits 23-0 have the values 30, 14, 23 and 5. Because the value of bits 25-24 is 10
(mutation amount has value 2), there will be 3 mutations, and the fourth does
not occur (though the figure shows where it would have occurred if allowed).

53

Computer Project Barricelli Performance Group

Figure 4.21: Setting mutation

Originally, the mutation core was implemented by behavioural description, but
since this caused the synthesizer to generate latches, ShifterVariables have been
implemented instead. The mutation core is implemented by use of four Shifter-
Variables, one for each possible mutation, and set so that only one bit is 1 for the
output. A final mutation is set by combining the outputs from the ShifterVari-
ables by using OR-function, and the mutation amount determines how many of
these outputs are combined. Figure 4.21 shows an example where bits 1, 4, 6
and 9 are set for mutation. In this case the final output is set by combining the
input and mutation with the XOR-function, so that for each bit i, the bit is set
to 1 if and only if bit i is set in either the input or the mutation, but not both.
This can be seen in figure 4.22.

54

Computer Project Barricelli Performance Group

Figure 4.22: Performing mutation

55

CHAPTER

5

PCB

Figure 5.1: The final design of the PCB.

A lot of effort has been invested to make the board as small as possible under
the design process in order to make the board fit a small cabinet that was made
by the group for the project. While the various cores of the genetics pipeline are

56

Computer Project Barricelli Performance Group

the central components of the Barricelli system, the system itself would be little
more than a simulation on some developer board without the printed circuit
board (PCB) connecting all the components. Designing the PCB and soldering
components onto it are therefore important aspects of the development process
of the Barricelli system.

In this chapter the PCB is presented. The design and production processes are
detailed. Explanations are provided for why certain components were chosen.
And encountered problems and their workarounds are presented.

5.1 Design choices

This section highlights and explains the choices made relating to the hardware
of the final PCB.

5.1.1 Field Programmable Gate Array (FPGA)

Per the project’s second non-functional requirement 1.2 on page 6, the system’s
FPGA was required to be one produced by Xilinx. The Spartan-6 family was
chosen because development boards with the Spartan-6 LX16 FPGA was avail-
able at the lab. Higher-numbered Spartan-6 FPGAs have more resources but
fewer I/O ports and a higher price tag than lower-numbered ones.

A Xilinx Spartan-6 LX45 (specifically, the XC6SLX45-2CSG324I) was chosen
because of it having a sufficient number of resources and enough I/O ports while
sporting a reasonable price tag.

5.1.2 Microcontroller / System Control Unit (SCU)

The EFM32 Giant Gecko 32-bit Microcontroller, was chosen for the project.
This microcontroller fullfills the non-functional requirement of using a micro-
controller made by Silicon Labs (Energy Micro 1.2 on page 6). In addition there
were development boards for the Giant Gecko 32-bit microcontroller available
at the lab.

The EFM32GG390F1024-BGA112 was chosen because it was deemed powerful
enough to satisfy the performance requirements and had the highest number of
available general purpose I/O (GPIO) pins amongst the microcontrollers with
the same kind of package.

5.1.3 Communication

The two major components on the system are the SCU and the FPGA. They
each fill an important role, and work on essential tasks. The system needs
them both to work together, and to accomplish this a communication channel
is needed. On Barricelli this was a 41 bit bus. This bus has 16 bits of data, 19
bits of addressing, a small 2 bit bus to control the state of the processor and 3

57

Computer Project Barricelli Performance Group

control signals. The stated bus determine what the FPGA should do with the
data, while the control signals tells the targeted unit what to do with the data.

5.1.4 Input/Output devices

This section presents the Input/Output (I/O) devices that were selected and
discusses alternatives that were not. An I/O device or channel that can be used
to communicate between a computer system and the outside world (or another
computer system).

Secure Digital (SD)

The Secure Digital (SD) memory card format was chosen because there were SD
cards available in the lab and most of the team’s members’ laptops had SD card
slots. The microSD format was considered, but guidelines on how to use and
implement it were scarce compared to information about the larger SD format.

In the SD interface, there are several protocols used for communication. The
“Serial Peripheral Interface Bus” transfer mode (“SPI bus mode”) was chosen
for the project as it allows the microcontroller to communicate with the SD card
as if it were a bus.

Universal Serial Bus (USB)

The USB interface was chosen because the chosen SCU has a built-in USB
driver, which reduced the amount of work required to implement the standard
considerably. USB connectors are prevalent on computers, and every team
member’s laptop had at least one USB connector. A micro-USB interface was
chosen because it was the smallest USB compliant interface available, which
meant the associated hardware would take up less physical space on the PCB
than its larger siblings’.

The design also includes circuits to prevent undesirable effects like electrostatic
discharge, preventing the signals from picking up unwanted background noise,
and crosstalk (disturbance of the signal from signals in other circuits). Resistors
were also added to prevent short circuiting.

There are several configurations applicable to the USB interface. The USB
protocol specifies that there should be one host (or “master”) and at least one
or more “slaves”. The master is responsible for managing the connection to its
slaves, and should also be able to provide a 5V current to its slaves if needed.

In Barricelli’s case, the microcontroller functions as a self-powered slave. The
device that is connected through the USB interface in order to communicate
with the microcontroller functions as the master.

The circuit design was copied from the microcontroller’s developer’s application
notes [4, Figure 2.2].

58

Computer Project Barricelli Performance Group

Ethernet

Ethernet support was not added to the system in favor of USB the chosen
microcontroller did not have built-in support for Ethernet.

Serial Port/RS-232

RS-232 (colloquially known as a “serial port”) is a communication standard
which is implemented through a serial port interface. Even though serial com-
munication was not required due to presence of USB interface, the decision was
made to implement it. The serial port serves as a backup for the USB as the
chosen microcontroller supports communication over RS-232.

5.1.5 Memory

The FPGA group wanted memory that would provide fast accesses in combina-
tion with a large input/output capacity in order maximize speed and efficiency.
SRAM (Static random-access memory) chips were selected because of its fast
access times. Reasonably priced 8 Mbit (512K x 16 bit) modules with 10ns
write and read cycle times were found to be suitable and selected.

5.1.6 Crystal

A 32.768KHz crystal was selected to drive the microcontroller. However as the
project progressed and the microcontroller’s application notes were read more
closely it was discovered that it did not need an external crystal to drive it as it
had an internal clock. In addition the 32.768KHz crystal was connected to the
wrong ports.

5.2 Power supply

As our requirements for the power supply were quite similar to the requirements
of earlier projects from the subject. The power supply from the Festiva Lente
system was reused in our system. This power supply have been used for many
years, with small changes improving the behavior and performance of the power
supply. To avoid introducing new problems, reusing this power supply was a
safe choice. The Barricelli system does however not require any 2.5 volt or 5 volt
power. As a result of this, these parts of the power supply have been removed
in our system, and only 12 volt, 3.3 volt and 1.2 volt power is available in our
system.

59

Computer Project Barricelli Performance Group

Figure 5.2: Final powersupply design.

60

Computer Project Barricelli Performance Group

Figure 5.3: Final design of the power plane. The power plane for 1.2V is the
long polygon that goes from the “powersupply” part of the board to the FPGA
core. The design is also focusing on having as low path as possible to all the
components that are using the power grid.

5.3 Power plane

For simpler routing, reduced noise and to reduce voltage drop we have used
power nets in this project. As shown in above the PCB have a dedicated layer
for power. There is a wide track with 1.2 volts for the FPGA and the rest of the
layer is one large 3.3 volt power net for all the other components. In addition
to these nets there is a dedicated layer for ground. The reason why we selected
the design is done in this way is to provide as short routing path as possible for
the sources using the power planes. Keeping a short distance as possible on all
signals is important in order to ensure as low loss of effect (measured in Watts)
as possible.

5.4 Footprints

This section details how various footprints for components used in the project
were obtained.

5.4.1 Obtaining footprints

Once a type of component has been decided upon for a project a specific instance
of said component must be decided upon. In order for said component to fit
onto the PCB and properly function, its footprint, must be placed somewhere on
the PCB. The footprint is a kind of blueprint containing a component’s outline
and pads.

Obtaining a footprint for a component typically involves creating one manually
or using a wizard based on the information contained in the component’s data
sheet. Some manufacturers make footprints for their components available on

61

Computer Project Barricelli Performance Group

their websites, however they might not be available in a format that is under-
standable by whatever PCB design suite that is employed in the current project.
Altium Designer (version 13.3) feature a browsable database of footprints for
various components, all of which can be used immediately in any Altium project.

If a component’s footprint is not readily available it has to be created manually.
The most important aspect of this process is to obtain the component’s technical
data sheet and examine it for a description of the component’s package and
dimensions. This is sometimes labeled as an outline drawing, suggested land
pattern (suggested pad size) or package outline. It is important to notice what
system the supplied measurements are in, as mixing for example imperial and
metric units in a project could lead to unforeseen incompatibilities. Once one
gets a hang of Altium PCB editor it takes surprisingly little time to create a
footprint.

For components with standardized packages, Altium has an IPC compliant
footprint wizard that generates footprints for a component given its package
type and some package specific measurements available in the component’s data
sheet.

The footprint for the polarized capacitor components were designed to match
the component’s outline, resulting in a footprint barely being large enough to
contain the actual component 5.4 on the following page.

This made soldering nontrivial. See 5.5 on page 64.

To avoid this complication the pads on footprint should be designed to be larger
than the pins so that the pads protrude beyond the actual component when it
is placed on the PCB, resulting in simpler soldering.

Component Footprint source
Headers Available in Altium’s Miscellaneous Connectors
FPGA Available in Altium Vault
Serial port connector Available in Altium’s Miscellaneous Connectors
Serial port driver Available in Altium Content Vault
Microcontroller Available in Altium Content Vault
Power connector Available in Altium’s Miscellaneous Connectors
Memory chip Created with Altium
LEDs Available in Altium Vault
Crystal Created with Altium
Oscillator Created with Altium
micro USB connector Available at manufacturer’s website
SD card receptacle Created with Altium
Switches Created with Altium
Transient voltage suppressor Available in Altium Vault
Capacitors Available in Altium Vault
Capacitors (Electrolyte) Created with Altium
Resistors Available in Altium Vault

Table 5.1: Footprints used in the project and how or where they were obtained.

The overview over components that we used and the way footprint for each of

62

Computer Project Barricelli Performance Group

Figure 5.4: Polarized capacitor footprint dimensions

63

Computer Project Barricelli Performance Group

Figure 5.5: Pads on footprint are smaller than pins of component

them was acquired is presented in a table. See 5.1 on page 62

5.5 Budget

The project’s budget was 10000 NOK [16]. The Computer Design project’s
budget was 23000 NOK per group in 2010 and 2011, and was reduced to 10000
NOK per group in 2012[12] while the price of a ham and cheese sandwich from
SiT Storkiosk at Gløshaugen has increased from 29 NOK in 2010 to 43 NOK in
2013. Markets are weird like that.

An non-negotionable criteria for all components selected (excepting the FPGA
and microcontroller) was that Farnell had enough of it in stock in their UK stor-
age. Generic surface mounted devices (resistors and capacitors) were required
to fit the 1206 or 1210 package so that the same footprint could be used for all
of them.

Components were required to function at 3.3V or 1.2V. If two seemingly equal
components passed the aformentioned requirements, the cheapest one was se-
lected.

The minimum amount of required components to produce one functioning Bar-
ricelli system cost 1240 NOK. However, some components could not be ordered
in increments of one. Taking this into account, the price of one functioning
Barricelli system was 1472 NOK.

The PCB cost 7795 NOK to produce. In total, the price of producing a single
Barricelli system is 9267 NOK – 733 below budget.

Approximately 300 NOK of the leftover money was used to construct the 3D-
printed case for Barricelli.

64

Computer Project Barricelli Performance Group

5.6 Design Process

5.6.1 PCB design and routing

Here we will talk about how the design was transferred to the PCB, what
problems were discovered in this process and how they were solved.

In the planning phase, the group estimated that the design of the PCB and
the routing process using the auto-router, would take about 3-4 days. However
in reality it took much longer than estimated. The reason for this was that
several problems were encountered during the design phase and routing of the
PCB. After the first auto-routing run, it was discovered that the auto-router had
violated several design constraints for the board. It was then tried to reroute
the board several times with different options in an attempt to fix the problem.
Since the auto routing process took about six hours on the lab computers, the
group decided to use more powerful private computers to perform the routing.
This reduced the time it takes for auto-routing from about 6 hours to 1.

After some attempts with the auto-router, the group decided to manually route
the last signals in order to fix the constraint violations. This was a time consum-
ing process, but during this, several serious design flaws were uncovered which
would have cost more time due to the need to produce new boards. Among the
errors that were discovered, was that the footprint for the microcontroller was
wrong: the diameter of the ball pads on the footprint were larger than its data
sheet recommended they be. Several of the capacitors were also unconnected,
or just connected in a wrong way. This means that even though the manual
routing of the PCB took longer, the discovery of the design flaws probably saved
us some time in total.

5.6.2 Soldering

Here we will talk about the soldering process and how we worked with that. This
will not cover major problems that needed a workaround (They are covered in
their own chapter), but rather the challenges we experienced in the soldering
process.

Due to numerous delays in the design of the schematics and the routing of the
PCB, the group had to complete the soldering process as fast as possible. In
order to do this effectively, the group coordinated the work in shifts so that
people were working on soldering the PCB both day and night time.

There were also some problems encountered during the soldering process. The
most significant problem was that it was discovered that we received voltage
regulators instead of the microcontrollers that were needed. This caused some
delay to the soldering process.

Also the ordering of the needed components were also done in many turns
instead of one large, single order. This happened because the components list
were not always updated when the schematics changed. The result of this
were that too few components were ordered. First after all the components

65

Computer Project Barricelli Performance Group

that was needed were ordered, it was discovered that there was functionality in
Altium that could be used to generate component lists. Using Altium instead
of manually updating the component list could probably have saved some time.

5.7 Problems and workaround

Here we will talk about various problems we discovered during the soldering
process, and how we found ways to workaround them. We expect that there
will be some things that may be possible to work around in code on the mi-
crocontroller, and other parts that require hardware fixes. There might also be
problems that cause parts of the board to not function.

5.7.1 Power connector footprint

The footprint of the power connector had three pairs of holes instead of a milled
groove. This caused the connector to not fit in the footprint. This was however
solved by cutting away the parts of the connector that did not fit on the PCB
using pliers. The result worked fine, and it’s hard to spot that the power
connector is modified if you do not have a correctly mounted connector as a
reference.

5.7.2 FPGA to SCU bus routing

Because of an error made during the routing of the board, the header pin for
FPGA ENABLE is not connected to any FPGA pins. This error can be cor-
rected by using one of our spare FPGA lines available on headers. A wire was
pulled from FPGA HEADER78 to the header from the SCU, and this header
cable allowed us to run the rest of the bus as planed.

66

Computer Project Barricelli Performance Group

Figure 5.6: For aesthetic appeal we 3D printed a bridge for the wire to run in

5.7.3 USB port

Figure 5.7: The figure shows the “hack” that were made on the PCB in an
attempt to fix the USB. Sadly the board were accidentally shortcircuted and
died before this the hack could be fully verified to be working

When the PCB came back from production, it was discovered that the USB was
not connected to the microcontroller according to the recommended specifica-
tions from the manufacturer of the microcontroller. The problem was that the
signals USB VBUS and USB VREGI were not connected to the VBUS-pin on
the USB receptacle. This was fixed by soldering copper wires on the capacitors
designated as C18 and C17 to USB-HEADER2 (called VBUS ENABLE in the

67

Computer Project Barricelli Performance Group

schematics). According to tests performed on the PCB before and after this
work-around, the problem was fixed successfully.

5.7.4 Oscillator

Measuring the pins between the oscillator and FPGA shows that the oscilla-
tor does output a signal, however the FPGA does not seem to receive it. No
workaround or fix was found.

68

CHAPTER

6

INPUT/OUTPUT

6.1 Input and Output

The PCB contains a microcontroller used to manage all input and output be-
tween the FPGA and the IO devices shown in Figure 3.1 on page 18. The
microcontroller listens on all IO channels for input, and acts on the input, ei-
ther forwarding the request to another device or performing memory operations
on the FPGA’s memory.

6.1.1 Initial requirements

The assignment required a microcontroller to handle IO for the FPGA. To
minimize the amount of things that could go wrong, much of the initial work
was focused on finding a few reliable and relatively simple data connections.

Specifically, the microcontroller was required to be able to put some program
and data on the FPGA’s memory, and then later output values from the data
memory through the proper communication lines. The I/O devices together
with the microcontroller and it’s software should be able to provide a reliable
and stable I/O connection between the outside world and the FPGA.

69

Computer Project Barricelli Performance Group

6.1.2 Communication channels

SD Card

The SD card reader is primarily used as a storage for programs that are to
be uploaded on the FPGA. However, it might also be used to store memory
snapshots in order to look how the genetic algorithm converges to a solution
over time.

The Energy Micro Application Note on Fat and SD cards, and its example
code, describes an implementation of the FatFS library on the Giant Gecko
microcontroller.[1]

FatFS [9]

FatFS is a generic FAT file system for microcontrollers, with a generic interface
for the FAT operations, and a hardware specific interface for disk I/O. Because
of this structure, the system is easily portable. To add read and write a FAT
system on some disk drive, FatFS needs the following functions:

disk initialize Initialize disk drive
disk status Get disk status
disk read Read sectors on disk
disk write Write sectors on disk
disk ioctl Control device dependent features
get fattime Get current time for FAT

Table 6.1: Overview of disk I/O functions

USB

The USB is the main communication line with a host computer, allowing the
host computer to start running programs on the FPGA and receive snapshots of
the memory periodically. The microcontroller has a built in USB controller [8]
and energy micro has supplied an application note [5] with code for utilizing the
included USB controller in order to act as a USB device.

Serial

The serial port is meant as a backup solution in case USB doesn’t work, with
the exact same opportunities, but with an older, simpler interface. The mi-
crocontroller used in the project has a built in UART Receiver/Transmitter[8]
which is easily activated with code from AN0045 [3].

LEDs and buttons

The most primitive form of IO we have are the on-board LEDs and buttons.
They allow a quick and easy way to verify that a program is running, and

70

Computer Project Barricelli Performance Group

possibly letting the user change execution modes or the program on the FPGA
with the buttons. All code interfacing with the LEDs and buttons are simple
code either setting or reading the value of GPIO pins. The LEDs are driven by
General Purpose IO pins on the SCU, requiring a minimal amount of code in
order to get a working output, which is especially handy in the early stages of
implementation.

FPGA

There are 41 wires between the FPGA and the SCU in order to facilitate com-
munication (see Table 6.2 for a complete list of all the connections). The FPGA
has no way of signalling that it wants to output something, so the SCU is re-
sponsible for periodically halting the CPU on the FPGA and reading from it’s
memory.

J-link

In order to program and debug the programs on the SCU, we utilize the built-in
pins for debugging using J-Link™as described in AN0043 [2]. It can also be used
as a form of last resort emergency output as it makes it possible to display text
that is printed by the program running on the SCU.

6.2 FPGA Control

The only way of communication with the FPGA is with direct memory access to
the FPGA’s data and instruction memory. All the data is transferred directly
over the SCU’s GPIO pins, without any form for memory mapping or built-
in bus interfaces. This is mostly due to the fact that we did not do enough
research early in the design process and recognized that we could use something
like External Bus Interface to access the memory.

Access to the FPGA’s memory is controlled by the signals seen in Table 6.2.
It should be noted that there are two states to access the FPGA’s instruction
memory, the upper and lower half. This is because the instruction memory
stores 32 bits per address while the SRAM chips only stores 16 bits per address
(see Section 4.3.1 for more details on the instruction memory).

The SRAM data sheet [6] specifies that the data signal has to be stable for at
least 10ns in order to complete a write. This means that it is not necessary to
worry about timing when accessing the SRAM since changing the signal more
than every 10ns requires a clock speed of 100MHz since we can at most change
the output of a single pin every cycle.

71

Computer Project Barricelli Performance Group

Signal Bus width
FPGA enable 1 Enables the FPGA on high, disables it on low

FPGA State 2

00: Processor enable
01: Instruction memory upper half access
10: Instruction memory lower half access
11: Data memory access

Chip enable 1 The chip enable signal in to the selected memory block.
Write enable 1 The write enable signal in to the selected memory block.
Address 19 The address bus to the selected memory block.
Data 16 The data bus to the selected memory block.
LBUB 1 The LB and the UB signal to the selected memory block.

Table 6.2: Lines between the SCU and FPGA

72

Computer Project Barricelli Performance Group

6.3 IO Program

Figure 6.1: The body of the IO program’s main loop

The IO program was designed to be as simple as possible in order to decrease
the amount of things that could go wrong. The main idea is that every IO
device is required to define two functions in order to be used: a function to poll
for input and a function that is called whenever a device reports input.

In order to enable sending messages between different IO units, the poll functions
return a pointer which may point to any object in memory, which allows other
modules to read the data given that they know what type of data the pointer
points to.

73

Computer Project Barricelli Performance Group

6.4 Design decision

This section contains a few key design decisions that were made during the
process which have had an important impact on the project. This section mainly
contains design decisions for the software on the SCU, for hardware design
decisions see Section 5.1.

6.4.1 Operating system

Early in the process, a discussion arose about how it could be beneficial to run
an operating system on the microcontroller such that familiar programs could
be run directly on it. A scenario pitched was to have network access, and then
be able to talk to the machine remotely using programs such as SSH or telnet.
However, the Linux distribution available for the Energy Micro microcontroller
was found lacking in the features we wanted, and the microcontroller lacks
network support. It was therefore decided that running an OS was unnecessary
as there were few rewards and little to gain from it.

6.4.2 FPGA Communication

During the initial design phase, the link between the FPGA and SCU was
designed to be as simple as possible. The final version was the the 41 wires
mapping all the signals needed for directly accessing the SRAM chips.

In retrospect, using the built-in EBI on the microcontroller would have made the
job of accessing the FPGA’s memory easier, letting the microcontroller map the
contents of the different chips automatically to different memory regions. The
main reason for not designing with EBI in mind was lack of knowledge of what
it could offer in terms of ease of development. Another reason for not looking
more into it was the fact that since we had a large enough bus, the code for
communicating with the SRAM chips was quite simple, with the microcontroller
not being fast enough that timing should be an issue.

6.5 Issues

6.5.1 Crystal

In the design phase it was decided to go with just a single high frequency crystal
oscillator. Unfortunately the crystal that was selected had a clock frequency in
the kHz range, instead of the MHz range, which was what was required to drive
the high frequency crystal port. Luckily the microcontroller has a built-in RC
oscillator, so the crystal oscillator was not essential to get code running on the
microcontroller. A higher I/O throughput could have been achieved with the
increased frequency the crystal oscillator would have given, but adding a high
frequency crystal would have required a new PCB card.

74

Computer Project Barricelli Performance Group

6.5.2 I/O units failing

As written in Section 5.7.3, the USB never got working on one of the PCB
boards. While falling back to UART, the code running on the microcontroller
seemed to be pushing data out to the UART circuitry, but there did not seem to
be any signal going out through the cable. Before managing to find a solution,
yet another PCB board failed due to an accidental short circuting of the board
and it was decided to rely on the debug link to send data to the computer as
the deadline approached.

The SD card was never finished, as the FatFS example code for Micro SD never
ran with the SD cards on the PCB. When further testing was to be done, the
PCB failed, and as with the UART, it was decided that the debug link would
suffice.

6.5.3 FPGA Memory access issues

At first, communicating with the memory on the FPGA seemed fine. However,
it soon became obvious that we were not able to reliably read or write to the
memory. Writing to and then subsequently reading the entire memory showed
that we were either not able to successfully write to and/or reading the entire
memory.

The first thing that was tried to fix this was to increase all the delays on reads
and writes, to allow signals to stabilise, but this showed little improvement.
Checking the signals sent with a logic analyzer showed that the memory should
have enough time to update before the write signal was disabled.

The write routine was also updated to write the memory and then immediately
reading the same adress to verify that the correct data had been written, redoing
it if it hadn’t. This did not fix out problems, as reading the memory later gave
different results.

In order to verify that reading the memory did not work, the FPGA was flashed
with a program already in it’s memory. Reading the entire memory showed
that while we managed to correctly read many of the addresses, some still gave
wrong data.

75

CHAPTER

7

ADDITIONAL COMPONENTS

7.1 Galapagos Assembler

The Galapagos Assembler is an assembler for Galapagos Assembly that was
written for this project. It assembles Galapagos assembly to be run on the
programmable fitness cores of the Barricelli computer. The assembler is written
in Python. It is designed with a modular, object-oriented software architecture,
which makes it easily extensible and modifiable. Indeed, during the short time
it has been published on the Internet, it has already been forked and adapted
for use for other instruction set architectures and assembly languages. The
assembler supports the entire Galapagos instruction set.

With a an assembler available, opportunities for performance optimizations
through instruction re-ordering are made available. The idea is that instructions
within a simple code block, i.e. a branch-less block of consecutive instructions
with no labels, instructions may be carefully re-ordered to minimize data haz-
ards. The assembler does not perform these instruction re-orderings. This is
because the forwarding unit in the processor architecture already resolves many
of the same issues that the assembler would work around using instruction re-
ordering.

The only non-control related hazards that the forwarding unit doesn’t already
resolve are use-after-load conflicts. A use-after-load conflict is a conflict where
the processor plans the execute a data load from memory, and then use the result
from that load in the immediately proceeding execution. When this happens,
the result from the memory load is not yet ready when the execution is planned
to execute. This hazard is resolved off-line by the assembler. It can detect
use-after-load hazards during assembly, and will insert a nop between the load

76

Computer Project Barricelli Performance Group

and use instructions, forcing the processor to wait until the data is available.

Galapagos Assembler is available in PyPi, the leading python package index.
This means that it is easily installable for end users using pip, the python pack-
age manager. Installation is as simple as running pip install galapagos-assembler

in a terminal where pip is available.

The source code of the Galapagos Assembler can be found in appendix D on
page 190.

7.2 Case

Figure 7.1: Case

To give this project a nice presentable finish and professional appearance, the
group decided to make a case for the computer. This was also a good opportu-

77

Computer Project Barricelli Performance Group

nity to develop our skills with 3D modeling. Because of this we chose to create
the case using a 3D printer.

7.2.1 Design

It was early decided that the case should have all of the features of the real
board. This would ensure that the user would be able to operate the computer
without ever feeling the need to take the board out of the case. This is why the
case have all of the user controlled LEDs and buttons from the PCB on the case
itself, and the buttons and LEDs are available from the board from headers.
The 16 LEDs are placed on the front panel, while the buttons are placed on a
small keyboard that slide out on a drawer in front of the case. The keyboard
drawer is loaded by a rubber band that keep it shut, while the mechanism shown
here will keep it open when the user have pulled it out.

Figure 7.2: Keyboard mechanism

To access the boards IO ports the case is open in the back. Here the user will
be able to pug in any of the IO devices, and also view the status of the two
power net LEDs. This is also where the user may slide the board in and out of
a tight track that hold the board.

The sides are decorated by two side panels. On the left side the projects name,
Barricelli, is written, along with the names of all the group members. On the
right side there is a picture of Nils Aall Barricelli. Both these side panels were
printed laying flat to get a smoother print and higher resolution. Because this
project have a focus on performance, we made these side panels red. This is
because red is well known as the fastest color [22].

The board dissipate heat from the power supply, and this heat must get out of
the case. To make the board run cool enough in the case the top of the case is

78

Computer Project Barricelli Performance Group

perforated with 42 ventilation holes.

To decorate the case, an NTNU logo was put on the front panel between the
user LEDs and the reset button and power LED.

Figure 7.3: Case before assembly. (The two parts of the NTNU logo are already
assembled)

The case is made up of 10 3D printed parts, 16 user controlled LEDs, a power
LED, a reset button, a circuit board with 8 user readable buttons and a whole
lot of wiring and resistors. All of this make a compact case of 20x21.5x4cm full
of useful features.

7.2.2 Tools

• MakerBot Replicator 2 Desktop 3D Printer

• MakerWare

• Google SketchUp

• Fine grade sand paper (P240)

• A variety of pliers, knifes and pincers

79

Computer Project Barricelli Performance Group

7.2.3 Problems and workarounds

Figure 7.4: Some of the failed prints

3D printing is a new technology, and compact desktop 3D printers like the
MakerBot 2 is even newer. As with all other new technology there are problems.
3D printers run into more problems than even normal printers do. Every time
you print a job there is a risk that something will go horribly wrong. The print
may have an error in the compilation, or maybe the PLA plastic filament get
tangled or just stop feeding. In addition, IDI’s 3D printer is in horrible shape.
It have got a broken nozzle cooling fan, a partially broken printer head fan and
a partially broken PLA filament feeding mechanism replaced with a new 3D
printed part.

Because of all these problems, each of the big jobs had to be ran many times
before the parts were good enough to be used.. The parts were not all as
expected, but with limited time, and jobs that took up towards 20 hours to run
they had to do. The parts that had imperfections were fixed through various
hacks.

Side panel with Barricelli

One of the corners had not stuck to the surface during the printing operation.
This may have been caused by the broken nozzle fan. The result was that one
of the corners of the panels was warped by about 5 mm where it was supposed
to be flat. It was however possible to get it almost flat using a heat gun and a
hammer. After that a knife was used to cut away the parts that was supposed
to keep the panel in place. Instead of these parts to keep it in the case, a lot of
glue was used.

80

Computer Project Barricelli Performance Group

Keyboard tray

Because of imperfections in the printing process, the keyboard was not able to
slide as intended. This could have been solved by designing it a bit smaller, but
the group had almost no experience with 3D printing, and did not know this
would be a problem. It was however solved by sanding it down with fine grade
sand paper.

Keyboard tray stopper

The keyboard tray stopper was a bit too wide and tall to actually fit in the case.
This part was small, and could quickly be reprinted. The problem could also be
solved even quicker by cutting of a few millimeters with pliers, so we did that.
The part will not be visible anyway, as it’s role is purely functional.

Front of the case

The front of the case was the second larges part of the case. Because of the
complexity of the job, there was a high risk of failure during the job. After 6
or 7 failed prints the printer had a print that ran about 50% of the job before
failing. The piece of the part was good enough to be used, and we decided keep
that piece, and print the rest as a separate job. This meant that we had to have
an extra glued seem in the completed case, but time was running out so we did
it anyway. The second part of the piece printed fine, and apart from the visible
seem it worked out OK.

Back of the case

The back of the case was the largest and most complex part of the case. To
make things worse, it had to be printed in one piece to actually work. This
meant that the printer had to run almost 20 hours non-stop without failing
After many failed prints the printer was abandoned, and we asked a company
at NTNU School of Entrepeneurship to borrow their identical, but functioning
printer. Their printer had some minor problems, but the job completed fine at
first try.

81

Part III

Results and Discussion

82

CHAPTER

8

TESTS

When designing a computer with a custom architecture from scratch, it is im-
portant to continually test and evaluate the correctness of the solution at all
possible stages, to ensure that final product is a success. This section docu-
ments and explains the rationale behind the different types of tests that have
been performed.

8.1 Testing the Processor

Barricelli’s processor has been tested at four different levels: VHDL-based unit
test simulations of the different subcomponents, VHDL-based integration test
simulations of each processing unit, VHDL-based system test simulations of the
entire system interfacing against a mock SCU and mock memory, and finally
physical integration tests of the processor programmed onto the FPGA of the
Barricelli.

8.1.1 VHDL-based Subcomponent Unit Test Simulations

Unit testing VHDL entities is extremely important in a large and complex design
like the Barricelli. For this project, almost every component, perhaps except
the most trivial entities, is tested in an automated or semi-automated VHDL
test bench. A tool was developed to ease the automation of VHDL test running
and validation, modeled after the leading test runners in the software industry,
such as JUnit[10] and Karma[11]. This tool enabled tests to be written using
easy-to-use self-evaluating tests that compare signals at specific times against
expected values.

83

Computer Project Barricelli Performance Group

The goal of these unit tests is to ensure that the building block components
work as expected when reacting to specified input.

Screenshots of simulations of these tests can be found in Appendix F.

Fitness Core Components

What to test: Test if all the ALU functions work as expected.

How to test: Perform an automatic unit test where all the ALU functions
are tested at least five times under different circumstances.
This is written in a test bench and verified with Isim.

Pass criteria: All the performed calculation should be as expected.

Results: Successful. All calculations is able to calculate the correct
result in every case.

Table 8.1: ALU

Genetic Pipeline Components

What to test: Test if the selection core behaves as expected.

How to test: Connect the selection core to a BRAM block filled with
fitness values and induviduals, and a PRNG. Then set the
counter to N and the enable signal high. Finally, wait for
the done signal to become high.

Pass criteria: The selection core shuld read N random fitness values from
the BRAM. When it reads the first value or a value greater
than the currently stored value or the first value it should
store the individual at the next address. After it has com-
pared N values, it should set done high and output the
fittest individual.

Results: Successful. The selection core compares exactly N fitness
values and only stores the individual if the fitness value is
greater than that of the previously best. Finally it sets
done high and outputs the fittest.

Table 8.2: The selection core

Selection Core

84

Computer Project Barricelli Performance Group

Crossover core .

What to test: Check if crossover split function performs crossover cor-
rectly, from correct bit

How to test: Changes in any input should cause change in the out-
puts. Therefore parent inputs and random number will be
changed during test.

Pass criteria: The output for child1 should have output from parent1
and child2 from parent2 before crossover point, and child1
should have output from parent2 and child2 from parent1
after crossover point. The starting point, which is the first
bit in the crossover, should always be the bit number equal
to the value of random number.

Results: Successful. Changes in parents cause expected changes in
children, and starting point for crossover is always equal to
the value of random number

Table 8.3: Crossover Core Split function

What to test: Check if Crossover Double-Split Function performs
crossover correctly, from correct starting bit to correct end-
ing bit

How to test: Changes in any input should cause change in the out-
puts. Therefore parent inputs and random numbers will
be changed during test.

Pass criteria: The output for child1 should have output from parent1 and
child2 from parent2 before crossover starting point and af-
ter ending point, and child1 should have output from par-
ent2 and child2 from parent1 between the crossover starting
point and ending point. The random number with the high-
est value should always be the starting point, and the one
with the lowest value should always be the ending point.
These points, which are the first and the last bit in the
crossover, should always be the bit numbers equal to the
value of the random numbers. If both have same value,
then only one bit location will have a crossover

Results: Successful. Changes in parents cause expected changes in
children, and starting point for crossover is always equal
to the value of the highest random number, and ending
point for crossover is always equal to the value of the lowest
random number

Table 8.4: Crossover Core Double-Split function

85

Computer Project Barricelli Performance Group

What to test: Check if Crossover XOR Function performs crossover cor-
rectly, from correct starting bit to correct ending bit

How to test: Changes in any input should cause change in the out-
puts. Therefore parent inputs and random number will be
changed during test.

Pass criteria: The output for child1 should have output from parent1
and child2 from parent2 for each bit i, where in the ran-
dom number the value is 0, and child1 should have output
from parent2 and child2 from parent1 for each bit i, where
in the random number the value is 1.

Results: Successful. Changes in parents cause expected changes in
children, and for each bit i in the random number, there
are crossover at same bit i from the parents to the children.

Table 8.5: Crossover Core XOR function

What to test: Check if Crossover Toplevel selects correct crossover func-
tion based on control input, and random number when in
”Party Mode”

How to test: Every input of control input will be tested. Changes in
random number will be done with focus on the 2 LS bits
when control input is ”1XX”, and in party mode.

Pass criteria: When control input is set to 000, or 1XX and ran-
dom input-bits to 00, crossover should be split with the
value of the 6 LS bits from random number used for start-
ing point. When control input is set to 001, or 1XX and
random input-bits to 01, crossover should be double-split,
with the value of the 12 LS bits from random number used
for starting and ending point. When control input is set to
010, or 1XX and random input-bits to 10, crossover should
be xor, with crossover on every bit numbers that are 1 in
random number. When control input is set to 011, or 1XX
and random input-bits to 11 there should be no crossover
at all, and output children should be equal to each their
input parent.

Results: Successful. Each value in control input was tested, and set
the expected function. When set to 1XX, every value on
the 2 LS bits in the random number was tested, and set the
expected function.

Table 8.6: Crossover Core Toplevel

86

Computer Project Barricelli Performance Group

Mutation core .

What to test: Check if Mutation Core selects mutates when allowed, mu-
tates the correct amount of bits, and the correct bit num-
bers, all based on chance input and random number.

How to test: Changes on input will change output. Therefore in-
put will have changes. Changes in random number and
chance input will be done with focus to test allowing or
denying mutation. Changes in random number will also
be done to test amount of allowed mutations, and to test
selecting the locations of the mutations

Pass criteria: When the P first bits in random number is equal to or
higher than chance input (size P), there should be no mu-
tation at all. When mutation is allowed, the next two bits
should allow these amount of mutations: 1-4 depending on
values 00-11. Bits 23-0 select four bit locations for muta-
tions, and the output should have opposite value on these
locations compared to the input. If more than one bit lo-
cation pointer has the same value, the same bit location
should still have the mutation on the output.

Results: Successful. Mutation is allowed only when the P first bits
are lower than the chance input, the correct amount of mu-
tations were set and each four bit locations were selected
correctly as expected by bits 23-0

Table 8.7: Mutation Core

8.1.2 VHDL-based Processing Unit Integration Test
Simulations

Each processing unit, which each consists of several interconnected subcompo-
nents, has been simulated for integration testing. The goal of these tests are to
verify that the different subcomponents interface correctly with each other, and
that the behaviour of the supercomponent is as expected.

8.1.3 VHDL-based System test Simulations

The toplevel simulation test bench of the Barricelli computer, which simulates
the entire FPGA as a black box interfacing against the external components,
supports pre-loading entire programs into a mocked instruction memory com-
ponent. The Galapagos Assembler supports outputting assembled programs
compiled to one of these mock memory components, meaning that testing new
programs in a simulated environment is an easy and fun process.

A formal description of the system tests performed at this level can be found in
tables 8.18, 8.9, 8.10, 8.11, 8.12, 8.14, 8.13, 8.15, and 8.16.

87

Computer Project Barricelli Performance Group

What to test: Observe that RRI and RRR instructions propagate
correctly through the pipeline, and produce the cor-
rect result.

How to test: The program in listing F.2.1, consisting of both RRR
and RRI instructions, are loaded into memory with
the test framework. The execution of the instruc-
tions are observed with ISim.

Pass criteria: Register r1 should contain 0xBA1212ICECC1 and
register r2 should contain 0xBA1212ICECC1

Results: The contents of register r1 and r2 are according to
the pass criteria.

Table 8.8: RRR and RRI instructions

What to test: Check if the branch address is calculated correctly,
and an conditional jump is performed to this address.

How to test: The program in listing F.2.1, is loaded into a test
bench. This simple program consists of a simple loop
performing some arithmetic operations that store
values to registers. The execution of the program
is simulated with ISim to verify the result

Pass criteria: The branch is taken. The instructions located in
the fetchstage, decodestage, and executestage are
flushed. The result in register r1 equals 1. The r1
register is not incremented.

Results: Register r1 contains the value 1. The instructions in
fetchstage, decodestage and executestage does not
perform any changes to the register file. Thus the
value in register r1 continuous to contain the value
1.

Table 8.9: Branch taken

88

Computer Project Barricelli Performance Group

What to test: Check if the conditional jump is disregarded when
performing conditional that always evaluate to false.

How to test: The program in listing F.2.1, is loaded into a test
bench. The simple program consists of conditionals
that evaluate to false. The execution of the program
is simulated with ISim, and the results are verified.

Pass criteria: The conditional jump is not taken. The values of r1
should be incremented until reaching the value of 4.

Results: Register r1 contains 4 after end of simulation.

Table 8.10: Branch not taken

What to test: Check if conditional instruction are executed when
they always are evaluated to true.

How to test: The program in listing F.2.1, is loaded into test
bench. The simple program consists an ADDI and
an conditional ADDI instruction that always evalu-
ate to true. The execution of the program is sim-
ulated with ISim, and the result is verified. More
specifically, the content of register r1 are verified.

Pass criteria: The first ADDI results in the r1 to be incremented
with 1. The second instruction, the conditional, in-
crements the value of r1 to 2.

Results: The contents of register r1 is 2. This proves that the
conditional instruction was executed.

Table 8.11: Conditional instruction executed

89

Computer Project Barricelli Performance Group

What to test: Check if conditional instructions are executed when
they always evaluate to false.

How to test: The program in listing F.2.1, is loaded into a test
bench. The simple program consists of a set of simple
conditional instructions that always evaluate to false.
The execution of the program is observed in ISim,and
the results are verified. The content of register r1 is
observed.

Pass criteria: The second instruction, the conditional ADDI, is not
executed. The content of register r1 is 1.

Results: The content of register r1 is 1. The conditional ADDI
instruction is not executed. .

Table 8.12: Conditional instruction not executed

What to test: Observe that STORE instructions stores data to the
fake data memory.

How to test: The program in listing F.2.1, consisting of mainly of
STORE instructions. These are loaded into a test
bench, and simulated with ISim. The memory dump
is read after the simulation.

Pass criteria: The memory dump shows that value 1 was stored to
address zero.

Results: The value of address zero is 1.

Table 8.13: Store data

90

Computer Project Barricelli Performance Group

What to test: Observe that LOAD instructions is able to read from
memory, and load the memory content into the spec-
ified registers.

How to test: The program in listing F.2.1, consisting of a LOAD
and STORE instruction. These are loaded into a
test bench, and simulated with ISim. The content of
register r1 is verified.

Pass criteria: The stored values is loaded from memory and stored
in register r1. The values in the register corresponds
to the data written and loaded from memory, which
is 1.

Results: Register r1 is loaded with the value 1.

Table 8.14: Load data

What to test: Observe that STORE GENE instructions are able to
store gene and fitness values to the rated pool.

How to test: The program in listing F.2.1, consisting mainly of
STORE GENE instructions. These are loaded into
a test bench, and simulated with ISim. The con-
tent of the rated pool is verified. This is verified by
performing a memory dump of the rated pool.

Pass criteria: The memory dump contains an individual corre-
sponding to the value 1 and with the corresponding
fitness value of 2. These values are easily spotted
when the initial values of the pool are randomly gen-
erated.

Results: The store of the fitness and gene is confirmed by the
memory dump.

Table 8.15: Store gene

91

Computer Project Barricelli Performance Group

What to test: Observe that a gene is fetched from the unrated code,
and stored in the specified register

How to test: The program in listing F.2.1, consisting of LOAD
GENE instructions. These are loaded into a test
bench and simulated with ISim. The content of
the location of the distributed counters are checked
against the data loaded to the fitness cores.

Pass criteria: The data fetched from the rated pool is the same
gene transmitted to the fitness core.

Results: Success

Table 8.16: Load gene

What to test: Test a specific genetic problem using the Galapagos
architecture. The problem in question aims to find
a specific color, magicpink, by genetic evolution.

How to test: The program in listing E is loaded into a test bench.
The programs consists of both genetic and fitness re-
lated instructions. Program is executed and verified
with ISim. The registers containing the best chromo-
some and fitness values are studied during the run.

Pass criteria: Execution shall show an improvement of the fitness
scores and the chromosomes as the program simu-
lates. E.g that it converges against a solution.

Results: The problem converges and the color is found.

Table 8.17: Find color: A genetic solution

92

Computer Project Barricelli Performance Group

What to test: Test a spesfic genetic problem using the barricelli
computer. The problem in question aims to find a
solution to the knapsack problem. The problems in-
volves finding the best combination of items to put
into a knapsack with a weight constraint. The test
start with a set of items with a given score and
weight. The program can be found in listing E.

How to test: The program in listing E is loaded into a test bench.
The program consists of both genetic and fitness re-
lated instructions. The program is executed and ver-
ified in isim. The registers containing the best solu-
tions are studied during the run.

Pass criteria: It is observed that the best solution converges against
a better solution regularly. E.g that it continuously
improve for the better.

Results: It is observable that it improve after a number of
microseconds. It is, however, difficult to determine if
this solution is good since the simulation is limited to
just a few microseconds. Note that the simulations
create a lot of simulation related data for a small
amount of simulation time.

Table 8.18: The knapsack problem : A genetic solution

8.1.4 Timing simulation

When designing an processor architecture on hardware it is important to take
timing into considerations. Electric circuitry has some small delay for electric
signals to propagate through the circuits. When performing normal behaviour
simulation these delays are not detectable. Behaviour simulation considers cir-
cuits without delay; everything happens instant. This is fine when checking if
the code behaves as intended. However, the real world is not perfect. There is
need to check how this logic actually behaves on circuits with the accompanying
delay.

This is accomplished by performing what is referred to as timing simulation.
During the compilation phase of the logic it is possible to generate timing data
to the simulations. With this timing data the simulation is able to simulate the
logic with real delay. When observing the timing simulations it is possible to
actually see how the different signals propagate. By observing the simulations
with these delay it is possible to uncover errors that would have been undetected
during the behaviour simulation.

In the Galapagos the logic was constructed very carefully to avoid such tim-
ing issues. This involved removing latches and being careful to synchronize the
components with the clock. And not least, only use one clock to not complicate
things. Because of this a very few errors were uncovered during this simulation.

93

Computer Project Barricelli Performance Group

Actually, only one error was discovered. As it turned out there existed some de-
lay between loading the instructions and execute them. The cycles was delayed
with one cycle. This was resolved by inserting a NOP .

8.2 Testing the PCB

During and after the components were soldered on the PCB board, the board
were tested to ensure that the power grid were working as it was supposed to.
For the first test, it was checked that all the various LEDs on the board was
working in order to verify that the board actually was powered right, and that
there was no short circuits on the power grid itself.

Some of the earliest test were also to check that the FPGA actually was working
properly, and it was done by making a simple FPGA echo program to test the
various pins on the FPGA. The pins on the FPGA were tested by connecting
a led to the various FPGA-headers. If the FPGA worked correctly, the led will
activate, indicating the the pins actually are operating right. When this test
was conducted on the first board that were soldered, it came out that the FPGA
was not ”baked on” right, and that we had to start solder a new board.

8.3 Testing IO

8.3.1 IO device tests

Test Name Buttons & LEDs
Steps

1. Upload a program reading the state of
all buttons and turning off the LEDs cor-
responding to the buttons pressed down
while leaving the rest of the LEDs on

2. Try pressing the different buttons

Expected Result All LEDs light up initially and turn off when
the corresponding button is pressed.

Actual Result All LEDs light up initially and turn off when
the corresponding button is pressed.

94

Computer Project Barricelli Performance Group

Test Name Debug connection test
Steps

1. Connect the debug pins to the appro-
priate pins on the energy micro develop-
ment kit

2. Turn the debug to OUT
3. Connect to the development kit using

energyAware commander

Expected Result EFM32GG990F1024 listed as microcontroller
Actual Result EFM32GG990F1024 listed as microcontroller

Test Name SD Card test
Steps

1. Edit the code from AN0030 [1] to use
correct pins

2. Compile the code, upload and run it,
with SD Card connected

3. Confirm data on SD Card

Expected Result File with string “EFM32 ...the world’s most
energy friendly microcontrollers !” is added
to the SD Card.

Actual Result The SD card was not found, and the text not
present on the SD Card

Test Name USB test
Steps

1. Compile the code from AN0065 [5]
2. Upload and run it
3. Run the supplied host PC program while

connected to the PCB through USB

Expected Result The host programs runs successfully
Actual Result The host program fails to connect through

USB

Test Name Serial test
Steps

1. Compile the code from AN0045 [3]
2. Upload and run it
3. Connect the host PC to the PCB and

run terminal emulator of choice

Expected Result ”Energy Micro RS-232 - Please press a key”
appears in the terminal

Actual Result No output in terminal

95

Computer Project Barricelli Performance Group

8.3.2 FPGA bus

Test Name SRAM test
Steps

1. Write a value to a range of addresses
2. Read the same address and compare

with the value written

Expected Result The values are identical
Actual Result Most of the values are identical, with some

addresses reporting the wrong value

Test Name Running a program
Steps

1. Upload a program to fill the memory
with fibonacci numbers

2. Let the CPU run for a while to en-
sure that somehting has been written to
memory.

3. Read memory and check whether the fi-
bonacci numbers are stored, the first on
adress 0, the next on the next address
and so on.

Expected Result A sequence of fibonacci numbers in the mem-
ory.

Actual Result Seemingly random data read from the memory

8.4 Additional Tests

8.4.1 The Pseudo-Random Number Generator

The pseudo-random number generator designed for the Barricelli has been tested
extensively with a pseudo-random number generator test suite called DieHarder[7].
DieHarder is a test suite which measures the “goodness” of a pseudo-random
number generator based a number of criteria.

The algorithm was implemented in python and tested against the DieHarder
integration suite.

The shift-based algorithm used in the pseudo-random number generator scores
quite poorly in the DieHarder tests when every single bit of the output is used.
However, by only using every 7th number, the algorithm ranks quite well. A
condensed DieHarder test result overview can be found in Table 8.19 on the
next page. The descriptions in the table are modified from the descriptions in
the output of the DieHarder test suite.

96

Computer Project Barricelli Performance Group

Test Name Pass?
DieHard ”Birthdays Test” FAILED
Diehard Overlapping 5-Permutations Test FAILED
Diehard 32x32 Binary Rank Test FAILED
Diehard 6x8 Binary Rank Test FAILED
Diehard Bitstream Test. FAILED
Diehard Overlapping Pairs Sparse Occupance (OPSO) FAILED
Diehard Overlapping Quadruples Sparce Occupancy (OQSO) Test FAILED
Diehard DNA Test FAILED
Diehard Count the 1s (stream) (modified) Test FAILED
Diehard Count the 1s Test (byte) (modified) FAILED
Diehard Parking Lot Test (modified) FAILED
Diehard Minimum Distance (2d Circle) Test FAILED
Diehard 3d Sphere (Minimum Distance) Test FAILED
Diehard Squeeze Test FAILED
Diehard Sums Test WEAK
Diehard Runs Test FAILED
Diehard Craps Test FAILED
Marsaglia and Tsang GCD Test FAILED
STS Monobit Test WEAK
STS Runs Test PASSED
STS Serial Test WEAK
RGB Bit Distribution Test FAILED/WEAK
the generalized minimum distance test FAILED
RGB Permutations Test PASSED
RGB Lagged Sums Test PASSED
The Kolmogorov-Smirnov Test Test WEAK
DAB Byte Distribution Test PASSED
DCT (Frequency Analysis) Test FAILED
DAB Fill Tree Test FAILED
DAB Fill Tree 2 Test FAILED
DAB Monobit 2 Test FAILED

Table 8.19: DieHarder test results of the PRNG

Finally, some genetics algorithms convergence tests were run, also simulated in
python, using the different pseudo-random algorithm candidates as a random
number source in the experiments. Based on the results from these experiments,
it is safe to conclude that, while Barricelli’s pseudo-random number generator
algorithm may not be best-in-class for producing convincing randomness, it is
definitely good enough for problem solving using genetic algorithms, and most
certainly quicker than other more “proper” algorithms.

97

CHAPTER

9

RESULTS

This section section describes the results of different measurements, calculations
and tests that were run on the Barricelli computer. It also documents the dif-
ferent demonstration programs that showcase and illustrate Barricelli’s purpose
through practical use, as well as research done in the design of Barricelli.

9.1 Research

9.1.1 Steady State Genetic Algorithm

A big question in the design of the architecture, was how to implement the
genetic algorithm. As 1.2.1 on page 5 states, the instruction set should in-
clude instructions to speed up genetic operations. To fulfill this requirment, the
algorithm would have to be directly integrated with the computer.

In the research, some papers were found that discussed Steady State Genetic
Algorithms.[19] As these were described as being advantageous on a MIMD
architecture, there was interest in further research. However, few citations were
found on how steady state algorithms performancewise related to traditional
genetic algorithms. This section documents an original research on Steady State,
where both a generational and a steady state solver was implemented in Python,
and used to solve a problem.

Problem

98

Computer Project Barricelli Performance Group

Listing 9.1: Genetic problem

1 import random
2
3
4 c l a s s MaximizeBitstr ingGeneticProblem (ob j e c t) :
5
6 def i n i t (s e l f , b i t s t r i n g l e n g t h =500):
7 s e l f . b i t s t r i n g l e n g t h = b i t s t r i n g l e n g t h
8
9 def s e l e c t (s e l f , populat ion) :

10 i f (l en (populat ion) < 10) :
11 return max(z ip (map(s e l f . f i t n e s s , populat ion) , populat ion)) [1]
12 return max(
13 s e l f . s e l e c t (populat ion [: l en (populat ion) / 2]) ,
14 s e l f . s e l e c t (populat ion [l en (populat ion) / 2 :])
15)
16
17 def c r o s sove r (s e l f , i nd i v idua l a , i nd i v i dua l b) :
18 return i nd i v i dua l a [: l en (i nd i v i dua l a) /2] + \
19 i nd i v i dua l b [l en (i nd i v i dua l b) / 2 :]
20
21 def mutate (s e l f , i nd i v i dua l) :
22 return [b i t ˆ 1 i f random . random () > 0 .95 e l s e b i t
23 f o r b i t in i nd i v i dua l]
24
25 def c r e a t e I nd i v i dua l (s e l f) :
26 return [i n t (random . random () ∗ 2) f o r i in range (s e l f . b i t s t r i n g l e n g t h)]
27
28 def f i t n e s s (s e l f , populat ion) :
29 return f l o a t (sum(populat ion))/ l en (populat ion)

The problem, implemented in listing 9.1, is to maximize a bit string, that is to
make let have every bit be 1. Implemented are functions for selection, crossover,
mutation, creation and calculating fitness. I. e. what is needed for a genetic
search.

Solvers

Listing 9.2: Generational solver

1 c l a s s Generat iona lGenet icAlgor i thmSolver (ob j e c t) :
2
3 @staticmethod
4 def s o l v e (problem , f i t n e s s g o a l =0.95 , p opu l a t i on s i z e =100):
5
6 # populat ion s i z e has to be a mul t ip l e o f 4 f o r implementation reasons
7 popu l a t i on s i z e = popu l a t i on s i z e − popu l a t i on s i z e % 4
8
9 # generate i n i t i a l populat ion

10 populat ion = sor ted (
11 [problem . c r e a t e I nd i v i dua l () f o r i in range (popu l a t i on s i z e)] ,
12 key=lambda ind i v i dua l : 1 − problem . f i t n e s s (i nd i v i dua l))
13
14 generat ion = 0
15
16 b e s t i n d i v i du a l = populat ion [0]
17
18 whi le problem . f i t n e s s (b e s t i n d i v i du a l) < f i t n e s s g o a l :
19
20 pr in t ” generat ion ” , generat ion
21 pr in t ” f i t n e s s : ” , problem . f i t n e s s (b e s t i n d i v i du a l)
22 pr in t ””
23
24 # pos s i b l y s t o r e new best i nd i v i dua l
25 i f problem . f i t n e s s (populat ion [0]) > problem . f i t n e s s (
26 b e s t i n d i v i du a l) :
27 b e s t i n d i v i du a l = populat ion [0]
28
29 # s e l e c t
30 s e l e c t e d = [problem . s e l e c t (populat ion)
31 f o r i in range (popu l a t i on s i z e /2)]
32
33 # cro s sove r
34 new ind iv idua l s = [problem . c ro s sove r (
35 s e l e c t e d [i ∗2] , s e l e c t e d [i ∗2+1])
36 f o r i in range (l en (s e l e c t e d) / 2)]
37
38 # mutate
39 mutated new indiv idua l s = [problem . mutate (i nd i v i dua l)
40 f o r i nd i v i dua l in new ind iv idua l s]
41
42 # rep l a c e l e a s t f i t i n d i v i dua l s with new ind i v i dua l s
43 populat ion . s o r t (
44 key=lambda ind i v i dua l : 1 − problem . f i t n e s s (i nd i v i dua l))
45 populat ion = populat ion [: p opu l a t i on s i z e ∗3/4] + \
46 mutated new indiv idua l s

99

Computer Project Barricelli Performance Group

47
48 populat ion . s o r t (
49 key=lambda ind i v i dua l : 1 − problem . f i t n e s s (i nd i v i dua l))
50
51 generat ion += 1
52
53 return {
54 ” s o l u t i on ” : b e s t i nd i v i dua l ,
55 ” f i t n e s s ” : problem . f i t n e s s (b e s t i n d i v i du a l) ,
56 ”work” : generat ion ,
57 }

Listing 9.3: Steady state solver

1 c l a s s ContinuousGeneticAlgor ithmSolver (ob j e c t) :
2
3 @staticmethod
4 def s o l v e (problem , f i t n e s s g o a l =0.95 , p opu l a t i on s i z e =100):
5
6 # generate i n i t i a l populat ion
7 populat ion = [problem . c r e a t e I nd i v i dua l ()
8 f o r i in range (popu l a t i on s i z e)]
9

10 work = 0
11
12 b e s t i n d i v i du a l = max(reve r s ed (sor ted (z ip (map(
13 problem . f i t n e s s , populat ion) , populat ion)))) [1]
14
15 p la c e counte r = 0
16
17 whi le problem . f i t n e s s (b e s t i n d i v i du a l) < f i t n e s s g o a l :
18
19 pr in t ”work” , work
20 pr in t ” f i t n e s s : ” , problem . f i t n e s s (b e s t i n d i v i du a l)
21 pr in t ””
22
23 # s e l e c t
24 s e l e c t e d a = problem . s e l e c t (populat ion)
25 s e l e c t e d b = problem . s e l e c t (populat ion)
26
27 # cro s sove r
28 new ind iv idua l = problem . c ro s sove r (s e l e c t ed a , s e l e c t e d b)
29
30 # mutate
31 mutated new indiv idual = problem . mutate (new ind iv idua l)
32
33 # rep l a c e random ind i v i dua l with new ind i v i dua l
34 populat ion [p l a c e counte r] = mutated new indiv idual
35 p la c e counte r = (p lac e counte r + 1) % len (populat ion)
36
37 i f problem . f i t n e s s (mutated new indiv idual) > problem . f i t n e s s (
38 b e s t i n d i v i du a l) :
39 b e s t i n d i v i du a l = mutated new indiv idual
40
41 work += 1
42
43 return {
44 ” s o l u t i on ” : b e s t i nd i v i dua l ,
45 ” f i t n e s s ” : problem . f i t n e s s (b e s t i n d i v i du a l) ,
46 ”work” : work ,
47 }

In listing 9.2, there is implemented a generational version of a genetic algorithm,
while in listing 9.3 there is a steady state version. The main difference of these
two solvers is how the new individuals are added to the population. In the
generational, the new individuals are inserted for the worst individuals in the
old population, maintaining the population size by keeping the best of the old
population if there is not enough new individuals. The steady state version just
replaces a random selected individual of the current population with the new
one.

100

Computer Project Barricelli Performance Group

Result

Generational Steady State
210 10899
243 27714
238 2336
134 4210
223 2048
143 4365
285 1526
244 8733
141 21515
180 3119

Table 9.1: Results of ten runs of the genetic programs

After 10 runs, the generational implementation had average number of genera-
tions equal 204.1, while the steady state has a comparative result of 86.5. The
result of the steady state seems much higher than the generational, as it doesn’t
count generation in the same way. To get comparable results, the work of the
steady state algorithm should be divided by the population size, in this case
100.

As can be seen from table 9.1, the number of generations varies a lot more in
the steady state, but as the average was significantly lower than generational,
the conclusion was that steady state was better, and chosen for the project.

9.2 Measurements

This section presents the measurements found during the project. These results
are discussed in Chapter 10 on page 106.

101

Computer Project Barricelli Performance Group

9.2.1 Performance

Figure 9.1: Total performance of Barricelli’s fitness cores, as a function of num-
ber of cores

The total performance of Barricelli’s fitness cores, measured as maximum theo-
retical clock speed times number of clock cores, is illustrated in Figure 9.1. This
shows that having multiple cores in a MIMD architecture indeed increases per-
formance, but it also shows that the performance only increases up to a certain
limit.

9.3 Demonstration Programs

This section documents the demonstration programs written for the Barricelli
computer to demonstrate its functionality. The programs are typically written
in Galapagos assembly for programs running on the custom processor, and C
for programs running on the SCU. The source code for these demonstration
programs can be found in appendix E on page 198.

9.3.1 Genetic Algorithm: Color Search

The color search program is a very simple program demonstrating a basic usage
of the genetics accelerator. The program tries to find a specific color in the
search-space of all 24-bit colors.

102

Computer Project Barricelli Performance Group

Individual representation

An individual represents a specific 24-bit color in RGB format. The individual
is coded to a 64-bit data word like in figure 9.2.

0781
5

1
6

2
3

2
4

6
3

blue green red

Figure 9.2: The binary coding of an individual for the color search problem

Fitness Function

The fitness for an individual is calculated using equation 9.1. The fitness a any
given individual falls in the range [0, 768].

fitness = 768

− |redindividual − redtarget|
− |greenindividual − greentarget|
− |blueindividual − bluetarget| (9.1)

Results

Figure 9.3 on the following page shows the evolution of the approximation sug-
gested as an answer by the genetic algorithm. In this problem instance the
target color was magic pink, i.e. the color with color code rgb(255, 0, 255). The
program run illustrated in figure 9.3 on the next page ran on 7 seven cores,
and the measurements are from regularly polling a single core for its current
best solution. Figure 9.3 on the following page clearly illustrates a typical trait
of genetic algorithm approximations: they are quite good at finding decent
approximations, but iterating to improve accuracy of the result is a game of
diminishing returns. The algorithm quickly finds a decent approximation of the
target color, but finding the exact value down to the last bit still takes time.

103

Computer Project Barricelli Performance Group

Figure 9.3: Color search progression (7 cores, 1 core sampled)

9.3.2 Genetic Algorithm: Binary Knapsack Problem

The knapsack problem is an optimization problem that is considered NP-hard.
The problem to solve is given a set of items with a weight and a value and a
knapsack that can hold a specific weight, what combination of items that can
fit in the sack has the highest value. If there can be at most one of each item
in the knapsack, we have what is known as the binary knapsack problem.

Individual representation

An individual represents a combination of items. The individual is coded to a
64-bit data word like in Figure 9.4.

063

bit i set if item i is in the include set, else unset

Figure 9.4: The binary coding of an individual for the binary knapsack problem

Fitness Function

The fitness for an individual is calculated using Algorithm 6. The fitness falls
between 0 for invalid sacks (that contain too much weight) to a theoretical

104

Computer Project Barricelli Performance Group

maximum of the sum of the value of all the items.

Data: A bit array with one bit representing whether each item is
included or not

Result: How fit the individual is
begin

weight←− 0
value←− 0
for item in ItemSet do

if item in genome then
weight←− weight+ item.weight
value←− value+ item.value
if weight > maxWeight then

value←− 0
break

end

end

end

return value
end
Algorithm 6: The fitness function for the binary knapsack problem

Results

This problem has not been run on the actual hardware, only simulated up to
a few milliseconds. The simulation seemed fine, and we got increasing fitness
values, but the problem space is huge, so we probably need to run the algorithm
for quite some time before coverging to a ideal/near-ideal solution.

9.3.3 Blinkenlights

Blinkenlights is a program that demonstrates the use of the input and output of
the Barricelli driven by the SCU. When a button is pressed, the corrensponding
LEDs to the button lit up. This program is also described as a test for I/O,
in 8.3.1 on page 94, named Buttons & LEDs.

105

CHAPTER

10

DISCUSSION

10.1 Performance

The Barricelli computer is designed to be a device for high performance parallel
computing. Throughout the design process, choices have been made that further
this goal.

The computer architecture is capable of executing multiple independent instruc-
tion streams working on multiple different independent data streams, which
means that parallelism can be exploited to a large degree to achieve a high
computational throughput. A heterogenic collection of cores, some general, and
some working as specialized accelerators, combines the allround-ness and usabil-
ity of general computing with the at times extreme performance boosts given
by specialized workers.

The general cores have been designed to exploit instruction-level parallelism,
iwth features such as pipelining, hazard detection and correction using forward-
ing, and branch prediction.

The intelligent off-line assembler also helps off-load some of the hazard detection
work from the processor, which lets the processor spend more of its valuable time
computing.

Since the computer uses a shared memory bus though a single memory con-
troller, it is an obvious scalability limitor. For the instruction memory, this
is somewhat mitigated by the inclusion of instruction caches, but there is still
room for improvement. To improve the memory performance, memory could be
organized in a more hierarchical fashion, with multiple cache levels.

106

Computer Project Barricelli Performance Group

10.1.1 Performance Measurements and Benchmarking

With the specified prototype of the Barricelli computer presented in this report,
looking at the results from the performance measurements in Chapter 8 on
page 83, the optimal number of parallel fitness cores is 7. Up to 7 processors,
the performance scales beautifully, with calculated total performance scaling
linearly with the number of cores. After 7 cores, the relative performance of
each core drops. It is not easy to see exactly why this happens, but it is quite
probably related to resource usage of the FPGA.

As the number of fitness cores increases, the more pressure it puts on the genetics
accelerator. As the number of fitness cores increases, the number of accelerators
should also increase.

10.1.2 Average Instructions per Cycle

In optimal condititons, i.e. the pipeline is filled, and no register spilling occurs,
the processor can execute n instructions per cycle, where n is the number of pro-
cessors. In the designed protoype of Barricelli, this means that the maximum in-
structions per second is 7cores ∗ 50Mhz = 350000000, or 350 Mega-instructions
per second.

10.2 Theory

In this section theory related to MIMD architectures and how to further improve
their performances are discussed. This also covers the discussions inside the
group about the design of the architecture in the planning phase of the project.

10.2.1 SPMD and Concurrency

One of the first discussions that came up in the group after the assignment
were given was if the processor cores should be able to synchronize themselves.
By doing this, the processor cores would be able to execute code that is not
completely independent in parallel in an elegant way. However this also raises
some issues as for instance data hazards.

10.2.2 Using CISC or RISC ISAs

CISC and RISC instruction set architectures are two very different ways of
thinking when it comes to creating instruction sets. While in the last years,
RISC ISAs have been the most dominant instruction set architecture, we can
also see that CISC architectures are on their way back into the markets. Some
of the reasons for this is that increasing parallelism is gaining lesser performance
increases.

107

Computer Project Barricelli Performance Group

Micro Operations: a Bridge Between Complex and Reduced
Instruction Sets

The use of micro operations is based on the principle that you want to convert
a complex instruction into a set of smaller micro operations. This may simplify
the design of for instance a super scalar processor because dependencies between
the converted micro instructions would already be known.

10.2.3 Memory Management Policies

The Galapagos architecture operates with several types of shared memory: in-
struction memory, data memory, instruction caches, rated pool and unrated pool.
These types of memories can further be divided into two groups: memory and
genetic related. These two groups are connected to separate data and address
buses. The access to these buses are handled by a request-acknowledgement
protocol. The responsible of this protocol is to control the access to the shared
memories and their respective buses. The protocol is based in the ideas of round-
robin scheduling. The request lines are continuously polled by the controllers
in a round-robin fashion. The reason for choosing this algorithm is because it is
considered to be fair. Since each request line is checked in turn, the algorithm
is considered starvation free. A requesting core will eventually get its request
handled by the controllers.

Since all the cores access the same memories this solution will, however, turn
out to be quite slow. Note that every core is in fact competing for the access to
memory. For memory intensive problems this bottleneck will be quite visible.
Every time cores wishes to perform simultaneously some memory access only
one of them will be granted access. For instance, consider a system with five
cores. If these cores have a relatively frequent memory access pattern it pretty
self explanatory that this will cause the the different cores being idle most of
the time. This will imply that the memory scheme in the galapagos architecture
does not scale very well. This implies that the more cores that are present the
less performance would be achieved.

A possible solution for this problem would have been keeping separate data
caches for each core. Then the cores could have been using the data located in
the caches instead of accessing the memory so frequently. When first accessing
the memory, the core could have loaded several data elements instead of just
one word for each request. This would surely been an improvement for the
memory system employed in the baracelli currently. This would, however, been
very difficult to achieve, and is not in the scoop of this assignment. Private data
caches would require implementing cache coherence algorithms for keeping the
caches consistent. This is considered very difficult.

Cache Coherency

MIMD architecture use a shared memory models. This imposes a problem when
using caches, and memory in general. When more core updates on the same
values on the same memory positions; memory collisions occur. These problems

108

Computer Project Barricelli Performance Group

can be fixed by enforcing that only one core is able to access the memory at
any given time. A far more difficult problem is the problem of cache coherence.
Cache coherency issues occurs when several cores have private caches containing
the same data, and some core changes the data. Then the data in the caches is
not consistent among the cores. In order for the data to be consistent, in this
example, is for each core having the same data. Note that same data in this
context mean data from the same memory location.

The Galapagos architecture does not support private data caches. This de-
sign choice relieves the processor designer of implementing advanced cache co-
herency algorithms in hardware. Instead of private data caches the Galapagos
architectures employ shared pools for rated and un-rated chromosomes. These
are connected to a bus and the connected through the genetic controller. The
controller is configured to only allow one core perform its operation on one of
the pools at any given time. This implies that read and write operations are
atomic. As a direct consequence cache coherency issues are not possible in the
architecture.

109

CHAPTER

11

WORK PROCESS

11.1 Development model

For this project, it was agreed that an adaption of the Scrum development
model should be used. The group wanted to use an agile development method
in order to be able to make quick changes to the requirement specification
during the project. The model is adapted however because many of the aspects
in scrum, like working in sprints does not work so well for this project due to
the unpredictable nature of the project. For the same reasons there was no
daily meetings, but rather once in a week where everyone is informed about the
current progress of the project.

11.2 Group Organization

From early on, the group divided itself into 3 work groups, focusing on three
main areas: FPGA, PCB and IO. This was done largely based on the fact that
it has been done similarly in the years before[12], and it seemed like a reasonable
thing to do. One advantage in doing this is that each work group can become
more specialized in their respective fields compared to if everyone were to work
equally on everything. This allows for a more advanced execution in the project,
which is a good thing. The group member work group allocation can be found
in table 11.1 on the following page.

Other than this group allocation, no other hierarchical elements were intro-
duced. The group functioned as a direct democracy in all other issues, with
no appointed leader. This approach had both it’s benefits and downsides. The

110

Computer Project Barricelli Performance Group

greatest benefit is that everyone got to take part in the important decisions
made in the project. The downside was that decisions also take much longer
time to take due to having to discuss matters over a meeting.

FPGA
Sigve Sebastian Farstad
Torbjørn Langland
Per Thomas Lundal
Bjørn Åge Tungesvik

PCB
Fedor Fadeev
Eirik Flogard
Rune Holmgren
Odd Magnus Trondrud

IO
Emil Taylor Bye
Péter Gombos

Table 11.1: Group Allocation

The group held weekly sync-up meetings in addition to a weekly status meeting
with the course staff. Unfortunately, meeting attendance was occasionally some
lower than what it should have been. Fortunately, meeting minutes were always
kept, so information from missed meetings did not go lost.

11.3 Organizational tools

11.3.1 GitHub

GitHub was used in order for everyone to be able to work at different parts of the
project at the same time. It also provides an excellent version control that would
allow a user to work on experimental ”branches”. When using branches, the
users does not need to worry about taking backups before trying out something
new. These branches can also be merged into the main project later.

11.3.2 Trello

Trello is a tool that the group used as ”scrum table” to keep everyone updated
in real time about the current progress in the project. The tool resembles a
scrum board which keeps track of what everyone is doing at a specific time.

111

Computer Project Barricelli Performance Group

11.4 Tools

Below here is a list of tools that were used directly to develop the system.

11.4.1 Software

ISE Project Navigator 12.4 (nt64) M.81d, expired licence
Main IDE for writing VHDL.

ISim 12.4 (nt64) M.81d, expired license
Main simulation environment for simulating VHDL.

ModelSim SE 6.6d
Secondary simulation environment for simulating VHDL.

Xilinx Platform Studio 12.4 (nt64) Build EDK MS4.81d+1, expired
licence
Used for preparing compiled VHDL for the FPGA board.

IAR Embedded Workbench for ARM 6.60.2.5507
Used for programming and debugging on the microcontroller.

Avnet Programming Utility
Used for configuring the FPGA.

energyAware Commander 2.82
Programming and troubleshooting of the microcontroller.

energyAware Designer 1.10
Used for configuring the GPIO pins and generating projects for the mi-
crocontroller.

Saleae Logic 1.1.9
Used to view the sampled waveforms from the logic analyzer

Tera Term Pro Web Version 3.1.3
Terminal emulator used for serial communication.

Text editors
Sublime Text 2, Vim 7.3, Notepad (©Copyright Microsoft Corporation).

GNU command-line tools
Grep, sed, find, etc.

git 1.8.1.2
Version control system.

GitHub
Remote code repository hosting, issue tracking, wiki for logging.

MakerWare 2.3.1.18
Compile 3D models.

Google SketchUp 8.0.16846
Create 3D models.

112

Computer Project Barricelli Performance Group

Google Spreadsheets
Keep lists organized.

texlive
Typesetting this report.

python 2.7.4
Writing the Galapagos assembler.

Adobe Creative Cloud InDesign CC
Designing the front page of this report.

Lucidchart
Creating charts.

11.4.2 Hardware

Xilinx Spartan-6 XC6SLX45 CSG324 FPGA board.

Energy Micro EFM32GG990F1024 Microcontroller.

Energy Micro EFM32GG-DK3750 Development kit used for testing code
on the microcontroller before the PCB arrived.

Energy Micro EFM32GG-STK3700 Prototyping and development when
the microcontroller on the PCB could not be used.

Saleae Logic Logic analyzer

Development PC, Windows 7 For development.

Mini USB cable For connecting the FPGA board to the development com-
puter.

Makerbot Replicator 2 3D printing the case.

Fluke Multimeter 77 Checking currents on the PCB.

Altec Lansing ACS340 Play sweet tunes in the lab while working.

113

CHAPTER

12

CONCLUSION AND
FURTHER WORK

We designed and tested a system capable of solving hard problems using genetic
algorithms. That is, the system’s PCB design looks sound on paper and the
processor has been successfully tested with simulations. However we were unable
to deliver a functioning physically integrated version of the system because the
ones we produced were eventually bricked for various reasons. Even so, we
fulfilled nearly all of our functional and non-functional requirements because as
it turns out none of these require a working, physically integrated1 system.

Our goal of constructing a general MIMD computer capable of solving hard
problems using genetic algorithms was met.

It is capable of receiving instructions and data from external entities through
the debug pins. The USB, SD and serial ports were not successfully tested due
to the problems with the PCB.

We implemented performance increasing techniques that would not overly com-
plicate the design.

The Galapagos instruction set includes instructions to load and store genes
from and to a genetics pool, which have eased the task of working with genetic
algorithms with the instruction set.

Soldering all the required components – including the Xilinx FPGA and “Energy
Micro” (now Silicon Labs) microcontroller – onto the system took approximately
eight hours. Although only one completely soldered board was produced: the

1with all the components soldered on

114

Computer Project Barricelli Performance Group

time required to solder a board would likely have been reduced with each further
board produced.

The cost of producing one complete system was below budget. The PCB’s
production cost ate up 78% of the budget.

The system’s 3D-printed case is pretty neat and a complete Barricelli system
can fit inside of it. It has all the visual features of the barricelli board, including
access to the I/O ports, I/O buttons and LEDs, reset and power indicator. The
eight switches and 20 LEDs can be connected to the Barricelli system so that
the Barricelli system can be interacted with even if it inside the case. The case
also has a ninth switch that can be connected to the reset button. However it
does not have a button that can be used as a power toggle switch.

We do not have a working demo program running a genetic algorithm. This
was the one requirement we did not manage to fulfill.

And of course there’s a report: the very same that you are reading right now.

The project has been challenging. It feels somewhat bizarre that we got so
far. They say experience is its own reward, if that is true we’ve been rewarded
plenty.

12.1 Further Work

To create a functioning system, care should be taken to not short circuit the
board. Also the oscilator on the board did not commmunicate with the FPGA,
and this should be looked into.

The PCB design does contain some elements that could (and would) be left out
of a second revision. For example, there should be a complete debug port for
the DK3750, so that a complete bus could be inserted, and not add random
wires.

115

GLOSSARY

Barricelli is the name of the genetic algorithm-solving MIMD computer de-
signed as a solution for the project documented in this report. Barricelli is
also the name of a famous Norwegian-Italian mathematician, after whom
the computer is named. 2, 10, 12, 17, 18, 20, 22, 24, 25, 105

BRAM Block RAM, dedicated circuitry within a FPGA used as RAM. 24, 29

data controller Memory controller responsible for the data memory access.
29

DSP slice Digital signal processor slices, dedicated circuitry in FGPAs that
contain specialised components to perform certain operation as fast as
possible. 39

EBI External Bus Interface. 74

FPGA Field Programmable Gate Array, an integrated circuit that can be pro-
grammed to perform a variety of operations, for instance acting as a pro-
cessor. iv, 18–20, 39

Galapagos is the name of the instruction set architecture designed for the
Barricelli computer. 8, 18, 20, 22, 23, 25, 34, 37, 42, 76, 102

Galapagos Assembler The assembler for Galapagos Assembly written in Python..
vi, 76, 77, 87

Genetic controller The controller that controls the genetic pipeline. 29

116

Computer Project Barricelli Performance Group

Harvard machine A computer architecture with physically separate instruc-
tion and data memory pools. 24

individual A single, feasible solution to a hard problem in genetic algorithms..
23

ISA Instruction Set Architecture, a set of opcodes and the native commands
implemented by a particular processor. 31

LUT LookUp Table, one of the base component of FPGAs, basically large
truth tables implemented in hardware. 39

MIMD Multiple Instruction, Multiple Data. 10, 25

MIPS Microprocessor without Interlocked Pipeline Stages, a RISC instruction
set architecture. 22, 31

nop No OPeration, an assembly instruction that does not perform anything,
used when one has to delay execution for a specific amount of clock cycles..
22, 76

rated controller Memory controller responsible for the rated pool. 29

Rated pool A memory pool of individuals that have been evaluated and are
ready for the selection stage of a genetic algorithm. 29

RISC Reduced instruction set computing, a CPU design strategy focusing on
simple instructions. 22

SCU is the EFM32 microcontroller which is used as a System control unit. v,
18, 20, 102, 105

Search space the collection of parameters to be searched over. 11, 14

SRAM Static Random Access Memory, very fast RAM that is more expensive
and less dense than dynamic RAM. 18, 24

unrated controller A memory pool of ”newborn” individuals that are ready
to be evaluated. 29

VHDL is the programming language in which the processor in implemented.
VHDL is short for VHSIC Hardware Description Language. vi, 83, 87

VHSIC is short for Very High-Speed Integrated Circuit. 117

117

Part IV

Appendices

118

APPENDIX

A

GALAPAGOS INSTRUCTION
SET ARCHITECTURE
DOCUMENTATION

119

Galapagos Instruction Set Architecture

November 20, 2013

i

CONTENTS

Contents

1 Introduction 1

2 Registers 2
General purpose registers . 2
Special purpose registers . 2

r0 - Zero Register . 2
PC - Program Counter . 2
ST - Status Register . 2

3 Instruction formats 3
RRR - Register Register Register 3
RRI - Register Register Immediate 3
RI - Register Immediate . 3
Conditions . 3

Assembly . 4

4 CPU Instruction Description Explanation 6

5 Arithmetic/Logic Instructions 7
ADD - Add . 8
ADDI - Add Immediate . 9
AND - Logical AND . 10
ANDI - Logical AND Immediate 11
MUL - Multiply . 12
MULI - Multiply Immediate . 13
OR - Logical OR . 14
ORI - Logical OR Immediate . 15
SLL - Shift Left Logical . 16
SLLI - Shift Left Logical Immediate 17
SRA - Shift Right Arithmetical . 18
SRAI - Shift Right Arithmetical Immediate 19
SRL - Shift Right Logical . 20
SRLI - Shift Right Logical Immediate 21
SUB - Subtract . 22
SUBI - Subtract Immediate . 23
XOR - Logical XOR . 24
XORI - Logical XOR Immediate 25

6 Control/Memory Instructions 26
CALL - Call Procedure . 27
JMP - Jump . 28
LD - Load . 29
LDI - Load immediate . 30

ii

CONTENTS

ST - Store . 31
STI - Store Immediate . 32

7 Genetic Instructions 33
LDG - Load gene from pool . 34
SETG - Set Genetics Pipeline Options 35
STG - Store Gene to Pool . 36

8 Pseudo Instructions 37
CMP - Compare . 38
MV - Move . 39
NEG - Arithmetical Negation . 40
NOP - No operation . 41
NOT - Logical NOT . 42
RET - Return From Procedure 43

iii

1 INTRODUCTION

1 Introduction

This document documents Baricelli’s Galapagos Instruction Set Architecture.
Barricelli is a general purpose computer which is equipped with specialized
hardware for high performance computation of hard problems using genetic al-
gorithms. It was designed by a team of 10 students at the Norwegian University
of Science and Technology over the course of one semester.

Barricelli has multiple independent cores; this document documents a single
core.

The first part of this document describes the general architecture, targeted to-
ward assembly programmers. The second part is a reference manual explain-
ing all the assembly instructions in detail.

1

2 REGISTERS

2 Registers

General purpose registers

The architecture has 31 general purpose 64-bit registers, r1 - r31.

Note that for the purpose of procedure calls, the CALL and RET instructions
treat r31 as the link register.

Special purpose registers

The architecture contains the following 3 special purpose registers.

r0 - Zero Register

The zero register always holds the value 0. It can not be changed by any
means, writing values to it simply has no effect.

PC - Program Counter

The program counter stores the address of the current instruction during execu-
tion time. During normal execution, PC increments by 1 after each instruction is
complete. PC may be changed by the programmer using instructions like JMP.
PC is a 19-bit register. It can not be directly accessed by any instruction.

ST - Status Register

The status register is a 4-bit register that holds flags that describe the out-
come of the previous instruction. This register is read for every instruction to
determine if conditionals are fulfilled. It can not be directly accessed by any
instruction.

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

0 0 0 0
}

Status Register

2

3 INSTRUCTION FORMATS

3 Instruction formats

There are three instruction formats: RRR, RRI and RI.

RRR - Register Register Register

RRR, or Register Register Register, has 3 register selectors and 1 function se-
lector. Register selectors specify one of 32 available general purpose registers.
The function selector selects a specific function for an opcode, when there are
multiple functions available.

012345678910111213141516171819202122232425262728293031

cond opcode rd rs rt function
}

RRR

RRI - Register Register Immediate

RRI, or Register Register Immediate, has 2 register selectors and 1 10-bit im-
mediate. Register selectors specify one of 32 available general purpose regis-
ters.

012345678910111213141516171819202122232425262728293031

cond opcode rd rs value (immediate) function
}

RRI

RI - Register Immediate

RI, or Register Immediate, has 1 register selector and 1 19-bit immediate. The
register selector specifies one of 32 available general purpose registers.

012345678910111213141516171819202122232425262728293031

cond opcode rd value (immediate)
}

RI

Conditions

All instructions have the possibility to embed a condition for the execution of the
instruction. The first 4 bits of each instruction specify the possible conditions,
which are:

• 0000 - Never

• 0001 - Equal (Zero)

• 0010 - Not Equal (Not Zero)

3

3 INSTRUCTION FORMATS

• 0011 - Greater Than or Equal (Positive or Zero)

• 0100 - Greater Than (Positive)

• 0101 - Less Than or Equal (Negative or Zero)

• 0110 - Less Than (Negative)

• 0111 - Overflow

• 1000 - Not Overflow

• 1111 - Always

The conditions use the current value of the status flags at execution time to
determine the outcome of the operation. If the condition is met, the instruction
is executed. If not, the instruction is not executed. This allows for branchless
conditionals.

Assembly

Galapgos assembly is written with one instruction per line. Instructions are
case-insensitive. Multi-line comments start with the token ’/*’ and end with the
token ’*/’. Labels are all bare strings matching the following regular expres-
sion: /[^:0-9\n\t\v][^:\n\t\v]*/, followed by the token ’:’. Labels must
stand on their own line, but can be indented with whitespace. Numerical
constants may be decimal on the form 1234567890, hexadecimal on the form
0x1234567890abcdefABCDEF, or binary on the form 0b10.

In the assembly, all instructions can be prefaced with a condition. Conditions
are prepended to the current instruction, using the token ’if’, followed by a
representation of the condition, and finally the token ’:’.

An example might look like this:

if equal: add r1, r2, r3

The available conditions are:

• equal

• not equal

• greater than

• greater than or equal

• less than

• less than or equal

4

3 INSTRUCTION FORMATS

• zero

• not zero

• positive

• positive or zero

• negative

• negative or zero

• overflow

• not overflow

• never

• always

5

4 CPU INSTRUCTION DESCRIPTION EXPLANATION

4 CPU Instruction Description Explanation

The rest of this document documents individual instructions in a reference man-
ual format. In this section, some of the figures and conventions used are ex-
plained.

The instruction word box shows the bit layout of the instruction, and which in-
struction format it is using. Here is an example of what it might look like:

012345678910111213141516171819202122232425262728293031

cond 1000 rd rs rt func
}

RRR

Textual descriptions denote the contents of a bit section. Binary strings denote
the actual binary contents that need to be present in that instruction. Gray
boxes denote unused or ”don’t care” sections.

Affected Status Flags

Many instructions may modify one or more flags in the status register. Each
instruction has a status register diagram which displays how the different flags
are affected. Here is an example of what the diagram looks like:

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

Z 0 V
}

Status Register

The different symbols in the diagram have the following meanings:

• 0: the flag is unset

• 1: the flag is set

• Z: the flag is set if the destination register is zero, else unset

• P: the flag is set if the destination register is positive, else unset

• N: the flag is set if the destination register is negative, else unset

• V: the flag is set if there is an overflow, else unset

• grayed out: the flag is unchanged

6

5 ARITHMETIC/LOGIC INSTRUCTIONS

5 Arithmetic/Logic Instructions

This section describes all arithimetical and logical instructions. All operations
are made available in both RRR and RRI formats. Note that the only difference
between the operations is the ALU function code. Also note that all operations
set all status flags.

7

5 ARITHMETIC/LOGIC INSTRUCTIONS

ADD - Add

012345678910111213141516171819202122232425262728293031

cond 1000 rd rs rt 0000
}

RRR

Format

ADD rd, rs, rt

Purpose

To add 64-bit signed integers. If overflow occurs, the overflow status bit is
set.

Description

rd← rs+ rt

The 64-bit signed word value in register rs is added to the 64-bit signed value
in register rt to produce a 64-bit signed result. The 64-bit signed result is put in
register rd. If a 64-bit 2’s complement arithmetic overflow occurs, the overflow
status bit is set.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

Z P N V
}

Status Register

8

5 ARITHMETIC/LOGIC INSTRUCTIONS

ADDI - Add Immediate

012345678910111213141516171819202122232425262728293031

cond 1100 rd rs constant (immediate) 0000
}

RRI

Format

ADDI rd, rs, constant

Purpose

To add a constant to a 64-bit integer.

Description

rd← rs+ immediate

The 10-bit signed immediate is added to the 64-bit value in register rs to pro-
duce a 64-bit result. The result is put in rd. If the addition results in a 64-bit 2’s
complement arithmetic overflow, the overflow register is set.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

Z P N V
}

Status Register

9

5 ARITHMETIC/LOGIC INSTRUCTIONS

AND - Logical AND

012345678910111213141516171819202122232425262728293031

cond 1000 rd rs rt 0101
}

RRR

Format

AND rd, rs, rt

Purpose

To logically AND two 64-bit words.

Description

rd← rs ∧ rt

The contents of register rs are combined with the contents of register rt in a
bitwise logical AND operation. The result is placed into register rd.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

Z P N 0
}

Status Register

10

5 ARITHMETIC/LOGIC INSTRUCTIONS

ANDI - Logical AND Immediate

012345678910111213141516171819202122232425262728293031

cond 1100 rd rs constant (immediate) 0101
}

RRI

Format

ANDI rd, rs, constant

Purpose

To do a bitwise logical AND with a constant.

Description

rd← rs ∧ immediate

The 10-bit immediate is zero-extended to the left and combined with the con-
tents of register rs in a bitwise logical AND operation. The result is place in to
register rd.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

Z P N 0
}

Status Register

11

5 ARITHMETIC/LOGIC INSTRUCTIONS

MUL - Multiply

012345678910111213141516171819202122232425262728293031

cond 1000 rd rs rt 0010
}

RRR

Format

MUL rd, rs, rt

Purpose

To multiply 32-bit signed integers. If overflow occurs, the overflow status bit is
set.

Description

rd← rs× rt

The least 32 bits of the 64-bit signed word value in register rs is multiplied with
the least 32 bits of the 64-bit signed value in register rt to produce a 64-bit
signed result. The 64-bit signed result is put in register rd. This computation
can not cause an overflow, but it is important to pay attention to the clipping of
input registers.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

Z P N 0
}

Status Register

12

5 ARITHMETIC/LOGIC INSTRUCTIONS

MULI - Multiply Immediate

012345678910111213141516171819202122232425262728293031

cond 1100 rd rs constant (immediate) 0010
}

RRI

Format

MULI rd, rs, constant

Purpose

To multiply a 32-bit signed integer with a constant. If overflow occurs, the over-
flow status bit is set.

Description

rd← rs× constant

The least 32 bits of the 64-bit signed value in register rs is multiplied by the
10-bit signed immediate constant to produce a 64-bit signed result. The result
is stored in register rd. This computation can not cause an overflow, but it is
important to pay attention to the clipping of input register.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

Z P N 0
}

Status Register

13

5 ARITHMETIC/LOGIC INSTRUCTIONS

OR - Logical OR

012345678910111213141516171819202122232425262728293031

cond 1000 rd rs rt 0100
}

RRR

Format

OR rd, rs, rt

Purpose

To logically OR two 64-bit words.

Description

rd← rs ∨ rt

The contents of register rs are combined with the contents of register rt in a
bitwise logical OR operation. The result is placed into register rd.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

Z P N 0
}

Status Register

14

5 ARITHMETIC/LOGIC INSTRUCTIONS

ORI - Logical OR Immediate

012345678910111213141516171819202122232425262728293031

cond 1100 rd rs constant (immediate) 0100
}

RRI

Format

ORI rd, rs, constant

Purpose

To do a bitwise logical OR with a constant.

Description

rd← rs ∨ immediate

The 10-bit immediate is zero-extended to the left and combined with the con-
tents of register rs in a bitwise logical OR operation. The result is place in to
register rd.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

Z P N 0
}

Status Register

15

5 ARITHMETIC/LOGIC INSTRUCTIONS

SLL - Shift Left Logical

012345678910111213141516171819202122232425262728293031

cond 1000 rd rt sa 0111
}

RRR

Format

SLL rd, rt, sa

Purpose

To logical left shift a 64-bit word.

Description

rd← rt <<logical sa

The 64-bit word in register rt is logically shifted left by the value in register sa.
The result is stored in register rd.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

Z P N 0
}

Status Register

Programming Notes

The maximum shift distance is 63 bits.

16

5 ARITHMETIC/LOGIC INSTRUCTIONS

SLLI - Shift Left Logical Immediate

012345678910111213141516171819202122232425262728293031

cond 1100 rd rs constant (immediate) 0111
}

RRI

Format

SLLI rd, rt, constant

Purpose

To logical left shift a 64-bit word by a constant.

Description

rd← rt <<logical constant

The 64-bit word in register rt is logically shifted left by the immediate value
constant. The result is stored in register rd.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

Z P N 0
}

Status Register

Programming Notes

The maximum shift distance is 63 bits.

17

5 ARITHMETIC/LOGIC INSTRUCTIONS

SRA - Shift Right Arithmetical

012345678910111213141516171819202122232425262728293031

cond 1000 rd rt sa 0011
}

RRR

Format

SRA rd, rt, sa

Purpose

To arithmetic right shift a 64-bit value.

Description

rd← rt >>arithmetic sa

The 64-bit signed contents of register rt is shifted right, duplicating the sign bit
into the emptied bits. The result is placed in register rd. The bit shift count is
specified as the 64-bit unsigned value in register sa.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

Z P N 0
}

Status Register

Programming Notes

The maximum shift distance is 63 bits.

18

5 ARITHMETIC/LOGIC INSTRUCTIONS

SRAI - Shift Right Arithmetical Immediate

012345678910111213141516171819202122232425262728293031

cond 1100 rd rs constant (immediate) 0011
}

RRI

Format

SRAI rd, rs, constant

Purpose

To arithmetic right shift a 64-bit value by a constant.

Description

rd← rs >>arithmetic constant

The 64-bit signed contents of register rs is shifted right, duplicating the sign bit
into the emptied bits. The result is placed in register rd. The bit shift count is
specified as the 10-bit unsigned immediate value constant.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

Z P N 0
}

Status Register

Programming Notes

The maximum shift distance is 63 bits.

19

5 ARITHMETIC/LOGIC INSTRUCTIONS

SRL - Shift Right Logical

012345678910111213141516171819202122232425262728293031

cond 1000 rd rs sa 1000
}

RRR

Format

SRL rd, rs, sa

Purpose

To logical right shift a 64-bit word.

Description

rd← rs >>logical sa

The 64-bit word in register rs is logically shifted right by the value in register
sa. The result is stored in register rd.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

Z P N 0
}

Status Register

Programming Notes

The maximum shift distance is 63 bits.

20

5 ARITHMETIC/LOGIC INSTRUCTIONS

SRLI - Shift Right Logical Immediate

012345678910111213141516171819202122232425262728293031

cond 1100 rd rs constant (immediate) 1000
}

RRI

Format

SRLI rd, rs, constant

Purpose

To logical right shift a 64-bit word by a constant.

Description

rd← rs >>logical constant

The 64-bit word in register rs is logically shifted right by the immediate value
constant. The result is stored in register rd.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

Z P N 0
}

Status Register

Programming Notes

The maximum shift distance is 63 bits.

21

5 ARITHMETIC/LOGIC INSTRUCTIONS

SUB - Subtract

012345678910111213141516171819202122232425262728293031

cond 1000 rd rs rt 0001
}

RRR

Format

SUB rd, rs, rt

Purpose

To subtract 64-bit signed integers. If overflow occurs, the overflow status bit is
set.

Description

rd← rs− rt

The 64-bit signed word value in register rt is subtracted from the 64-bit signed
value in register rs to produce a 64-bit signed result. The 64-bit signed result
is put in register rd. If a 64-bit 2’s complement arithmetic overflow occurs, the
overflow status bit is set.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

Z P N V
}

Status Register

Programming Notes

SUB is used as the compare instruction.

22

5 ARITHMETIC/LOGIC INSTRUCTIONS

SUBI - Subtract Immediate

012345678910111213141516171819202122232425262728293031

cond 1100 rd rs constant (immediate) 0001
}

RRI

Format

SUB rd, rs, constant

Purpose

To subtract a 10-bit signed constant from a 64-bit signed integer. If overflow
occurs, the overflow status bit is set.

Description

rd← rs− constant

The 10-bit signed word immediate value constant is subtracted from the 64-bit
signed value in register rs to produce a 64-bit signed result. The 64-bit signed
result is put in register rd. If a 64-bit 2’s complement arithmetic overflow occurs,
the overflow status bit is set.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

Z P N V
}

Status Register

23

5 ARITHMETIC/LOGIC INSTRUCTIONS

XOR - Logical XOR

012345678910111213141516171819202122232425262728293031

cond 1000 rd rs rt 0110
}

RRR

Format

XOR rd, rs, rt

Purpose

To logically XOR two 64-bit words.

Description

rd← rs⊕ rt

The contents of register rs are combined with the contents of register rt in a
bitwise logical XOR operation. The result is placed into register rd.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

Z P N 0
}

Status Register

24

5 ARITHMETIC/LOGIC INSTRUCTIONS

XORI - Logical XOR Immediate

012345678910111213141516171819202122232425262728293031

cond 1100 rd rs constant (immediate) 0100
}

RRI

Format

XORI rd, rs, constant

Purpose

To do a bitwise logical XOR with a constant.

Description

rd← rs⊕ constant

The 10-bit immediate is zero-extended to the left and combined with the con-
tents of register rs in a bitwise logical XOR operation. The result is placed into
register rd.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

Z P N 0
}

Status Register

25

6 CONTROL/MEMORY INSTRUCTIONS

6 Control/Memory Instructions

This section describes all instructions that manipulate program flow or handles
memory access.

26

6 CONTROL/MEMORY INSTRUCTIONS

CALL - Call Procedure

012345678910111213141516171819202122232425262728293031

cond 0011 rd target (immediate)
}

RI

Format

CALL rd, target

CALL label

Purpose

To call a procedure.

Description

r31← PC + 1

PC ← rd+ target

Stores the return address in the link register, before jumping to the effective
target address. The 64-bit signed offset value in register rd is added to the
target, and the least 19-bits of the result is put in the unsigned program counter
register.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123 }
Status Register

Programming Notes

The programmer may use the alternative format CALL label to call a procedure
by label.

27

6 CONTROL/MEMORY INSTRUCTIONS

JMP - Jump

012345678910111213141516171819202122232425262728293031

cond 0010 rd target (immediate)
}

RI

Format

JMP rd, target

JMP label

Purpose

To change the PC to a new location.

Description

PC ← rd+ target

Jumps to the effective target address. The 64-bit signed offset value in register
rd is added to the target, and the least 19-bits of the result is put in the unsigned
program counter register.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123 }
Status Register

Programming Notes

The programmer may use the alternative format JMP label to jump to a la-
bel.

28

6 CONTROL/MEMORY INSTRUCTIONS

LD - Load

012345678910111213141516171819202122232425262728293031

cond 0000 rd rs constant (immediate) -
}

RRI

Format

LD rd, rs, constant

Purpose

To load a 64-bit value from memory at a given address.

Description

rd← memory[rs+ immediate]

The contents of the memory location specified by the 19 least significant bits
of rs + immediate is fetched and placed into register rd. The address is un-
signed.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123 }
Status Register

29

6 CONTROL/MEMORY INSTRUCTIONS

LDI - Load immediate

012345678910111213141516171819202122232425262728293031

cond 0100 rd address (immediate)
}

RI

Format

LDI rd, address

Purpose

To load a 64-bit value from memory at a given address.

Description

rd← memory[address]

The contents of the memory location specified by the 19 bit address is fetched
and placed into register rd. The address is unsigned.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123 }
Status Register

30

6 CONTROL/MEMORY INSTRUCTIONS

ST - Store

012345678910111213141516171819202122232425262728293031

cond 0001 rd rs constant (immediate) -
}

RRI

Format

ST rd, rs, constant

Purpose

To store a 64-bit value in memory at a given address.

Description

memory[rs+ immediate]← rd

The contents of register rd is stored to the memory location specified by the 19
least significant bits of rs+ immediate The address is unsigned.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123 }
Status Register

31

6 CONTROL/MEMORY INSTRUCTIONS

STI - Store Immediate

012345678910111213141516171819202122232425262728293031

cond 0101 rd address (immediate)
}

RI

Format

ST rd, address

Purpose

To store a 64-bit value in memory at a given address.

Description

memory[address]← rd

The contents of register rd is stored to the memory location specified by the 19
bit address The address is unsigned.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123 }
Status Register

32

7 GENETIC INSTRUCTIONS

7 Genetic Instructions

This section describes all instructions specialized for access to and manipula-
tion of the genetics unit.

33

7 GENETIC INSTRUCTIONS

LDG - Load gene from pool

012345678910111213141516171819202122232425262728293031

cond 1001 rd
}

RRR

0000

Format

LDG rd

Purpose

To load a 64-bit genetic algorithm individual from the unrated pool.

Description

rd← individualfromunratedpool

A 64-bit genetic algorithm individual is fetched from the dedicated pool of un-
rated genetic algorithm individuals. The individual is stored in register rd. If
there are no individuals available, the processor will stall until there are.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123 }
Status Register

Programming Notes

This instruction is used to interface with the genetics accelerator.

34

7 GENETIC INSTRUCTIONS

SETG - Set Genetics Pipeline Options

012345678910111213141516171819202122232425262728293031

cond 1011 rd - (immediate)
}

RI

Format

SETG rd

Purpose

To set options for the genetics pipeline.

Description

The value of rd is passed to the genetics pipeline to set one or more set-
tings.

TODO: list of things to tweak, format for options

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123 }
Status Register

Programming Notes

This instruction is used to interface with the genetics accelerator.

35

7 GENETIC INSTRUCTIONS

STG - Store Gene to Pool

012345678910111213141516171819202122232425262728293031

cond 1010 rs rt
}

RRR

Format

STG rs, rt

Purpose

To put a 64-bit genetic algorithm individual with its 64-bit unsigned fitness score
in the rated pool.

Description

slotinratedpool← (rs, rt)

The 64-bit genetic algorithm individual in rs is put in the dedicated pool of rated
genetic algorithm individuals, together with its 64-bit unsigned fitness score in
rt.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123 }
Status Register

Programming Notes

This instruction is used to interface with the genetics accelerator.

36

8 PSEUDO INSTRUCTIONS

8 Pseudo Instructions

This section describes common instructions that are not implemented in hard-
ware but are given to programmers to ease coding. All the instructions are
converted to other instructions during the preprocessing step of the assem-
bler.

37

8 PSEUDO INSTRUCTIONS

CMP - Compare

012345678910111213141516171819202122232425262728293031

Pseudo instruction

Format

CMP rs, rt

Purpose

To compare two 64-bit signed numbers.

Description

statusflags[equal]← rs == rt

statusflags[greaterthan]← rs > rt

statusflags[lessthan]← rs < rt

Compare the contents of register rs and register rt as signed 64-bit integers.
Status flags are set based on the outcome of the comparison.

• If rs and rt are equal, the Equal status flag is set.

• If rs is greater than rt, the Greater status flag is set.

• If rs is smaller than rt, the Less status flag is set.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

Z P N V
}

Status Register

Programming Notes

This instruction is translated into:

SUB, r0, rs, rt

38

8 PSEUDO INSTRUCTIONS

MV - Move

012345678910111213141516171819202122232425262728293031

Pseudo instruction

Format

MV rd, rs

Purpose

To copy a value from one register to another.

Description

The contents of register rs are placed in rd.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

Z P N 0
}

Status Register

Programming Notes

This instruction is translated into:

ORI rd, rs, 0

39

8 PSEUDO INSTRUCTIONS

NEG - Arithmetical Negation

012345678910111213141516171819202122232425262728293031

Pseudo instruction

Format

NEG rd, rs

Purpose

To twos-complement negate a 64-bit word.

Description

rd← −rs

The 64-bit value in register rs is twos-complement negated. The negated result
is stored in register rd.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

Z P N V
}

Status Register

Programming Notes

This instruction is translated into:

SUB rd, r0, rs

40

8 PSEUDO INSTRUCTIONS

NOP - No operation

012345678910111213141516171819202122232425262728293031

Pseudo instruction

Format

NOP

Purpose

To do nothing for one clock cycle.

Description

No work is done for one clock cycle.

Programming Notes

The assembler will switch NOPs with an instruction where cond = never.

41

8 PSEUDO INSTRUCTIONS

NOT - Logical NOT

012345678910111213141516171819202122232425262728293031

Pseudo instruction

Format

NOT rd, rs

Purpose

To bitwise logically invert a 64-bit word.

Description

rd← ¬rs

The 64-bit value in register rs is bitwise logically inverted. The inverted result
is stored in register rd.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123

Z P N 0
}

Status Register

Programming Notes

This instruction is translated into:

XORI rd, rs, -1

TODO: XORI zero-extends, perhaps change all to sign-extend for simplicity?

42

8 PSEUDO INSTRUCTIONS

RET - Return From Procedure

012345678910111213141516171819202122232425262728293031

Pseudo instruction

Format

RET

Purpose

To return from a procedure call.

Description

PC ← r31

The least 19 bits of the link register is stored in the program counter.

Affected Status Flags

Zer
o

Gre
ate

r tha
n

Le
ss

tha
n

Ove
rflo

w

0123 }
Status Register

Programming Notes

This instruction is translated into:

JMP r31, 0

43

APPENDIX

B

PCB SCHEMATICS

166

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

A
4

D
ate:

17.11.2013
Sheet of

File:
C

:\U
sers\..\top_level.SchD

oc
D

raw
n B

y:

PSpow
er_supply.SchD

oc

LED
[0..15]

LED
S

leds.SchD
oc

SW
[0..7]

SWbuttons.SchD
oc

U
A

R
T0

SER
IA

L_PO
R

T
serial_port.SchD

oc

M
EM

O
R

Y

IM
EM

0
m

em
orychip_schem

atic.SchD
oc

M
EM

O
R

Y

IM
EM

1
m

em
orychip_schem

atic.SchD
oc

M
EM

O
R

Y

D
M

EM
m

em
orychip_schem

atic.SchD
oc

SW
[0..7]

LED
[0..15]

U
A

R
T0

FPG
A

H
FX

TA
L

U
A

R
T1

U
SB

B
O

O
T

SD
H

EA
D

ER

SC
U

m
icrocontroller.SchD

oc

FPG
A

D
A

TA
_M

EM

IN
ST_M

EM
0

IN
ST_M

EM
1

JTA
G

C
LK

FPG
A

_H
EA

D
ER

[0..83]

FPG
A

FPG
A

.SchD
oc

U
SB

U
SB

U
SB

device.SchD
oc

SD

SDsdsheet.SchD
oc

FPG
A

_H
EA

D
ER

[0..83]

U
A

R
T1

B
O

O
T

H
EA

D
ER

JTA
G

H
EA

D
ER

S
headers.SchD

ocH
FX

TA
L

X
TA

L
crystal.schdoc

SW[0..7]
LED[0..15]

D
A

TA
_M

EM

INST_MEM1

INST_MEM0

C
LK

O
SC

oscillator.SchD
oc

FPG
A

LED
S_LO

G
O

leds_logo.SchD
oc

FPGA_HEADER[0..83]

U
_decoupling

decoupling.SchD
oc

407fdd40

Top level

NLDATA0MEM
NLDATA0MEM
NLDATA0MEM

NLFPGA
NLFPGA
NLFPGA
NLFPGA

NLINST0MEM0NLINST0MEM0NLINST0MEM0NLINST0MEM1NLINST0MEM1NLINST0MEM1NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM
NLDATA0MEM

NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA
NLFPGA

NLFPGA0HEADER0000830
NLINST0MEM0NLINST0MEM1

NLLED0000150NLLED0000150NLLED0000150NLLED0000150NLLED0000150NLLED0000150NLLED0000150NLLED0000150NLLED0000150NLLED0000150NLLED0000150NLLED0000150NLLED0000150NLLED0000150NLLED0000150NLLED0000150NLSW000070NLSW000070NLSW000070NLSW000070NLSW000070NLSW000070NLSW000070NLSW000070

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

A
4

D
ate:

17.11.2013
Sheet of

File:
C

:\U
sers\..\pow

er_supply.SchD
oc

D
raw

n B
y:

1
2

PW
_H

2

H
eader 2

1
2

PW
_H

4

H
eader 2

IN
3

O
U

T
2

1

A
D

J

V
R

4

LM
1084IT-A

D
J

IN
3

O
U

T
2

1

G
N

D

V
R

2

LM
1084IT-3.3

1 23
PWD

C
-10B

G
N

D

12.0V

12.0V

3.3V

1.2VG
N

D

G
N

D

100nF

C
4

1210
100nF

C
5

1210
100nF

C
6

1210
100nF

C
7

1210

100nF

C
11

1210
100nF

C
12

1210
100nF

C
13

1210
120R

R
29

R
es 1210

0R R
31

R
es 1210

LED
2

H
SM

C
-C

190

LED
4

H
SM

C
-C

190

105R

R
25

R
es 1206

Toggle in

Toggle out

U
_psu_toggle_sw

itch
psu_toggle_sw

itch.SchD
oc

12

- +E11
10uF

12

- +E910uF

12

- +E810uF

12

- +E10
10uF

407fdd40

Pow
er supply

PIC401 PIC402
COC4

PIC501 PIC502
COC5

PIC601 PIC602
COC6

PIC701 PIC702
COC7

PIC1101 PIC1102
COC11

PIC1201 PIC1202
COC12

PIC1301 PIC1302
COC13

PIE801PIE802

COE8
PIE901PIE902

COE9

PIE1001PIE1002

COE10
PIE1101PIE1102

COE11

PILED201PILED202
COLED2

PILED401PILED402
COLED4

PIPW01
PIPW01A
PIPW01B

PIPW02
PIPW02A
PIPW02B

PIPW03
PIPW03A
PIPW03B

COPW

PIPW0H201PIPW0H202

COPW0H2

PIPW0H401PIPW0H402

COPW0H4

PIR2501PIR2502 COR25

PIR2901 PIR2902COR29

PIR3101 PIR3102COR31

PIVR201

PIVR202
PIVR203 COVR2

PIVR401

P
I
V
R
4
0
2

P
I
V
R
4
0
3 COVR4

PIC1202
PIC1302

PIE1101

PILED401

PIR2902
P
I
V
R
4
0
2

PIC502
PIC602

PIC702
PIE901

PIR2501
PIVR202

PIPW0H201PIPW0H401

PIC401
PIC501

PIC601
PIC701

PIC1101
PIC1201

PIC1301

PIE802
PIE902

PIE1002
PIE1102

PILED202PILED402

PIPW02
PIPW02A
PIPW02B

PIR3101

PIVR201
PIC402

PIE801
PIPW0H202

PIVR203

PIC1102
PIE1001

PIPW0H402
P
I
V
R
4
0
3

PILED201 PIR2502

PIPW01
PIPW01A
PIPW01B

PIPW03
PIPW03A
PIPW03B

PIR2901PIR3102

PIVR401

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

A
4

D
ate:

17.11.2013
Sheet of

File:
C

:\U
sers\..\psu_toggle_sw

itch.SchD
oc

D
raw

n B
y:

Toggle in

Toggle out

G3T13AP

VDD / IN5 4 4

6 6

TSW
G

3T13A
P

12
34

PSU
_H

H
eader 2X

2

407fdd40

PSU
 toggle sw

itch

PIPSU0H01PIPSU0H02

PIPSU0H03PIPSU0H04

COPSU0H

PITSW04PITSW05 PITSW06
COTSW

PIPSU0H02

PITSW04PITSW06

PIPSU0H04

PITSW05

PIPSU0H03

POToggle inPIPSU0H01 POToggle out
POTOGGLE INPOTOGGLE OUT

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

A
3

D
ate:

17.11.2013
Sheet of

File:
C

:\U
sers\..\FPG

A
.SchD

oc
D

raw
n B

y:

BANK 0

IO
_L1P_H

SW
A

PEN
_0

D
4

IO
_L1N

_V
R

EF_0
C

4

IO
_L2P_0

B
2

IO
_L2N

_0
A

2

IO
_L3P_0

D
6

IO
_L3N

_0
C

6

IO
_L4P_0

B
3

IO
_L4N

_0
A

3

IO
_L5P_0

B
4

IO
_L5N

_0
A

4

IO
_L6P_0

C
5

IO
_L6N

_0
A

5

IO
_L8P_0

B
6

IO
_L8N

_V
R

EF_0
A

6

IO
_L10P_0

C
7

IO
_L10N

_0
A

7

IO
_L11P_0

D
8

IO
_L11N

_0
C

8

IO
_L33P_0

B
8

IO
_L33N

_0
A

8

IO
_L34P_G

C
LK

19_0
D

9

IO
_L34N

_G
C

LK
18_0

C
9

IO
_L35P_G

C
LK

17_0
B

9

IO
_L35N

_G
C

LK
16_0

A
9

IO
_L36P_G

C
LK

15_0
D

11

IO
_L36N

_G
C

LK
14_0

C
11

IO
_L37P_G

C
LK

13_0
C

10

IO
_L37N

_G
C

LK
12_0

A
10

IO
_L38P_0

G
9

IO
_L38N

_V
R

EF_0
F9

IO
_L39P_0

B
11

IO
_L39N

_0
A

11

IO
_L41P_0

B
12

IO
_L41N

_0
A

12

IO
_L50P_0

C
13

IO
_L50N

_0
A

13

IO
_L62P_0

B
14

IO
_L62N

_V
R

EF_0
A

14

IO
_L63P_SC

P7_0
F13

IO
_L63N

_SC
P6_0

E13

IO
_L64P_SC

P5_0
C

15

IO
_L64N

_SC
P4_0

A
15

IO
_L65P_SC

P3_0
D

14

IO
_L65N

_SC
P2_0

C
14

IO
_L66P_SC

P1_0
B

16

IO
_L66N

_SC
P0_0

A
16

FPG
A

A

X
C

6SLX
45-2C

SG
324I

BANK 1

IO
_L1P_A

25_1
F15

IO
_L1N

_A
24_V

R
EF_1

F16

IO
_L29P_A

23_M
1A

13_1
C

17

IO
_L29N

_A
22_M

1A
14_1

C
18

IO
_L30P_A

21_M
1R

ESET_1
F14

IO
_L30N

_A
20_M

1A
11_1

G
14

IO
_L31P_A

19_M
1C

K
E_1

D
17

IO
_L31N

_A
18_M

1A
12_1

D
18

IO
_L32P_A

17_M
1A

8_1
H

12

IO
_L32N

_A
16_M

1A
9_1

G
13

IO
_L33P_A

15_M
1A

10_1
E16

IO
_L33N

_A
14_M

1A
4_1

E18

IO
_L34P_A

13_M
1W

E_1
K

12

IO
_L34N

_A
12_M

1B
A

2_1
K

13

IO
_L35P_A

11_M
1A

7_1
F17

IO
_L35N

_A
10_M

1A
2_1

F18

IO
_L36P_A

9_M
1B

A
0_1

H
13

IO
_L36N

_A
8_M

1B
A

1_1
H

14

IO
_L37P_A

7_M
1A

0_1
H

15

IO
_L37N

_A
6_M

1A
1_1

H
16

IO
_L38P_A

5_M
1C

LK
_1

G
16

IO
_L38N

_A
4_M

1C
LK

N
_1

G
18

IO
_L39P_M

1A
3_1

J13

IO
_L39N

_M
1O

D
T_1

K
14

IO
_L40P_G

C
LK

11_M
1A

5_1
L12

IO
_L40N

_G
C

LK
10_M

1A
6_1

L13

IO
_L41P_G

C
LK

9_IR
D

Y
1_M

1R
A

SN
_1

K
15

IO
_L41N

_G
C

LK
8_M

1C
A

SN
_1

K
16

IO
_L42P_G

C
LK

7_M
1U

D
M

_1
L15

IO
_L42N

_G
C

LK
6_TR

D
Y

1_M
1LD

M
_1

L16

IO
_L43P_G

C
LK

5_M
1D

Q
4_1

H
17

IO
_L43N

_G
C

LK
4_M

1D
Q

5_1
H

18

IO
_L44P_A

3_M
1D

Q
6_1

J16

IO
_L44N

_A
2_M

1D
Q

7_1
J18

IO
_L45P_A

1_M
1LD

Q
S_1

K
17

IO
_L45N

_A
0_M

1LD
Q

SN
_1

K
18

IO
_L46P_FC

S_B
_M

1D
Q

2_1
L17

IO
_L46N

_FO
E_B

_M
1D

Q
3_1

L18

IO
_L47P_FW

E_B
_M

1D
Q

0_1
M

16

IO
_L47N

_LD
C

_M
1D

Q
1_1

M
18

IO
_L48P_H

D
C

_M
1D

Q
8_1

N
17

IO
_L48N

_M
1D

Q
9_1

N
18

IO
_L49P_M

1D
Q

10_1
P17

IO
_L49N

_M
1D

Q
11_1

P18

IO
_L50P_M

1U
D

Q
S_1

N
15

IO
_L50N

_M
1U

D
Q

SN
_1

N
16

IO
_L51P_M

1D
Q

12_1
T17

IO
_L51N

_M
1D

Q
13_1

T18

IO
_L52P_M

1D
Q

14_1
U

17

IO
_L52N

_M
1D

Q
15_1

U
18

IO
_L53P_1

M
14

IO
_L53N

_V
R

EF_1
N

14

IO
_L61P_1

L14

IO
_L61N

_1
M

13

IO
_L74P_A

W
A

K
E_1

P15

IO
_L74N

_D
O

U
T_B

U
SY

_1
P16

FPG
A

B

X
C

6SLX
45-2C

SG
324I

BANK 2

IO
_L1P_C

C
LK

_2
R

15

IO
_L1N

_M
0_C

M
PM

ISO
_2

T15

IO
_L2P_C

M
PC

LK
_2

U
16

IO
_L2N

_C
M

PM
O

SI_2
V

16

IO
_L3P_D

0_D
IN

_M
ISO

_M
ISO

1_2
R

13

IO
_L3N

_M
O

SI_C
SI_B

_M
ISO

0_2
T13

IO
_L5P_2

U
15

IO
_L5N

_2
V

15

IO
_L12P_D

1_M
ISO

2_2
T14

IO
_L12N

_D
2_M

ISO
3_2

V
14

IO
_L13P_M

1_2
N

12

IO
_L13N

_D
10_2

P12

IO
_L14P_D

11_2
U

13

IO
_L14N

_D
12_2

V
13

IO
_L15P_2

M
11

IO
_L15N

_2
N

11

IO
_L16P_2

R
11

IO
_L16N

_V
R

EF_2
T11

IO
_L19P_2

T12

IO
_L19N

_2
V

12

IO
_L20P_2

N
10

IO
_L20N

_2
P11

IO
_L22P_2

M
10

IO
_L22N

_2
N

9

IO
_L23P_2

U
11

IO
_L23N

_2
V

11

IO
_L29P_G

C
LK

3_2
R

10

IO
_L29N

_G
C

LK
2_2

T10

IO
_L30P_G

C
LK

1_D
13_2

U
10

IO
_L30N

_G
C

LK
0_U

SER
C

C
LK

_2
V

10

IO
_L31P_G

C
LK

31_D
14_2

R
8

IO
_L31N

_G
C

LK
30_D

15_2
T8

IO
_L32P_G

C
LK

29_2
T9

IO
_L32N

_G
C

LK
28_2

V
9

IO
_L40P_2

M
8

IO
_L40N

_2
N

8

IO
_L41P_2

U
8

IO
_L41N

_V
R

EF_2
V

8

IO
_L43P_2

U
7

IO
_L43N

_2
V

7

IO
_L44P_2

N
7

IO
_L44N

_2
P8

IO
_L45P_2

T6

IO
_L45N

_2
V

6

IO
_L46P_2

R
7

IO
_L46N

_2
T7

IO
_L47P_2

N
6

IO
_L47N

_2
P7

IO
_L48P_D

7_2
R

5

IO
_L48N

_R
D

W
R

_B
_V

R
EF_2

T5

IO
_L49P_D

3_2
U

5

IO
_L49N

_D
4_2

V
5

IO
_L62P_D

5_2
R

3

IO
_L62N

_D
6_2

T3

IO
_L63P_2

T4

IO
_L63N

_2
V

4

IO
_L64P_D

8_2
N

5

IO
_L64N

_D
9_2

P6

IO
_L65P_IN

IT_B
_2

U
3

IO
_L65N

_C
SO

_B
_2

V
3

FPG
A

C

X
C

6SLX
45-2C

SG
324I

BANK 3

IO
_L1P_3

N
4

IO
_L1N

_V
R

EF_3
N

3

IO
_L2P_3

P4

IO
_L2N

_3
P3

IO
_L31P_3

L6

IO
_L31N

_V
R

EF_3
M

5

IO
_L32P_M

3D
Q

14_3
U

2

IO
_L32N

_M
3D

Q
15_3

U
1

IO
_L33P_M

3D
Q

12_3
T2

IO
_L33N

_M
3D

Q
13_3

T1

IO
_L34P_M

3U
D

Q
S_3

P2

IO
_L34N

_M
3U

D
Q

SN
_3

P1

IO
_L35P_M

3D
Q

10_3
N

2

IO
_L35N

_M
3D

Q
11_3

N
1

IO
_L36P_M

3D
Q

8_3
M

3

IO
_L36N

_M
3D

Q
9_3

M
1

IO
_L37P_M

3D
Q

0_3
L2

IO
_L37N

_M
3D

Q
1_3

L1

IO
_L38P_M

3D
Q

2_3
K

2

IO
_L38N

_M
3D

Q
3_3

K
1

IO
_L39P_M

3LD
Q

S_3
L4

IO
_L39N

_M
3LD

Q
SN

_3
L3

IO
_L40P_M

3D
Q

6_3
J3

IO
_L40N

_M
3D

Q
7_3

J1

IO
_L41P_G

C
LK

27_M
3D

Q
4_3

H
2

IO
_L41N

_G
C

LK
26_M

3D
Q

5_3
H

1

IO
_L42P_G

C
LK

25_TR
D

Y
2_M

3U
D

M
_3

K
4

IO
_L42N

_G
C

LK
24_M

3LD
M

_3
K

3

IO
_L43P_G

C
LK

23_M
3R

A
SN

_3
L5

IO
_L43N

_G
C

LK
22_IR

D
Y

2_M
3C

A
SN

_3
K

5

IO
_L44P_G

C
LK

21_M
3A

5_3
H

4

IO
_L44N

_G
C

LK
20_M

3A
6_3

H
3

IO
_L45P_M

3A
3_3

L7

IO
_L45N

_M
3O

D
T_3

K
6

IO
_L46P_M

3C
LK

_3
G

3

IO
_L46N

_M
3C

LK
N

_3
G

1

IO
_L47P_M

3A
0_3

J7

IO
_L47N

_M
3A

1_3
J6

IO
_L48P_M

3B
A

0_3
F2

IO
_L48N

_M
3B

A
1_3

F1

IO
_L49P_M

3A
7_3

H
6

IO
_L49N

_M
3A

2_3
H

5

IO
_L50P_M

3W
E_3

E3

IO
_L50N

_M
3B

A
2_3

E1

IO
_L51P_M

3A
10_3

F4

IO
_L51N

_M
3A

4_3
F3

IO
_L52P_M

3A
8_3

D
2

IO
_L52N

_M
3A

9_3
D

1

IO
_L53P_M

3C
K

E_3
H

7

IO
_L53N

_M
3A

12_3
G

6

IO
_L54P_M

3R
ESET_3

E4

IO
_L54N

_M
3A

11_3
D

3

IO
_L55P_M

3A
13_3

F6

IO
_L55N

_M
3A

14_3
F5

IO
_L83P_3

C
2

IO
_L83N

_V
R

EF_3
C

1

FPG
A

D

X
C

6SLX
45-2C

SG
324I

PR
O

G
R

A
M

_B
_2

V
2

SU
SPEN

D
R

16

C
M

PC
S_B

_2
P13

D
O

N
E_2

V
17

TC
K

A
17

TD
I

D
15

TD
O

D
16

TM
S

B
18

FPG
A

E

X
C

6SLX
45-2C

SG
324I

V
C

C
A

U
X

B
1

V
C

C
A

U
X

B
17

V
C

C
A

U
X

E14

V
C

C
A

U
X

E5

V
C

C
A

U
X

E9

V
C

C
A

U
X

G
10

V
C

C
A

U
X

J12

V
C

C
A

U
X

K
7

V
C

C
A

U
X

M
9

V
C

C
A

U
X

P10

V
C

C
A

U
X

P14

V
C

C
A

U
X

P5

V
C

C
IN

T
G

7

V
C

C
IN

T
H

11

V
C

C
IN

T
H

9

V
C

C
IN

T
J10

V
C

C
IN

T
J8

V
C

C
IN

T
K

11

V
C

C
IN

T
K

9

V
C

C
IN

T
L10

V
C

C
IN

T
L8

V
C

C
IN

T
M

12

V
C

C
IN

T
M

7

V
C

C
O

_0
B

10

V
C

C
O

_0
B

15

V
C

C
O

_0
B

5

V
C

C
O

_0
D

13

V
C

C
O

_0
D

7

V
C

C
O

_0
E10

V
C

C
O

_1
E17

V
C

C
O

_1
G

15

V
C

C
O

_1
J14

V
C

C
O

_1
J17

V
C

C
O

_1
M

15

V
C

C
O

_1
R

17

V
C

C
O

_2
P9

V
C

C
O

_2
R

12

V
C

C
O

_2
R

6

V
C

C
O

_2
U

14

V
C

C
O

_2
U

4

V
C

C
O

_2
U

9

V
C

C
O

_3
E2

V
C

C
O

_3
G

4

V
C

C
O

_3
J2

V
C

C
O

_3
J5

V
C

C
O

_3
M

4

V
C

C
O

_3
R

2

FPG
A

F

X
C

6SLX
45-2C

SG
324I

G
N

D
A

1

G
N

D
A

18

G
N

D
B

13

G
N

D
B

7

G
N

D
C

16

G
N

D
C

3

G
N

D
D

10

G
N

D
D

5

G
N

D
E15

G
N

D
G

12

G
N

D
G

17

G
N

D
G

2

G
N

D
G

5

G
N

D
H

10

G
N

D
H

8

G
N

D
J11

G
N

D
J15

G
N

D
J4

G
N

D
J9

G
N

D
K

10

G
N

D
K

8

G
N

D
L11

G
N

D
L9

G
N

D
M

17

G
N

D
M

2

G
N

D
M

6

G
N

D
N

13

G
N

D
R

1

G
N

D
R

14

G
N

D
R

18

G
N

D
R

4

G
N

D
R

9

G
N

D
T16

G
N

D
U

12

G
N

D
U

6

G
N

D
V

1

G
N

D
V

18

FPG
A

G

X
C

6SLX
45-2C

SG
324I

N
C

F7

N
C

E6

N
C

E7

N
C

E8

N
C

G
8

N
C

F8

N
C

G
11

N
C

F10

N
C

F11

N
C

E11

N
C

D
12

N
C

C
12

N
C

F12

N
C

E12

FPG
A

H

X
C

6SLX
45-2C

SG
324I

G
N

D

3.3V
1.2V

FPG
A

_IN
STA

D
D

R
0

FPG
A

_IN
STA

D
D

R
1

FPG
A

_IN
STA

D
D

R
2

FPG
A

_IN
STA

D
D

R
3

FPG
A

_IN
STA

D
D

R
4

FPG
A

_IN
STA

D
D

R
5

FPG
A

_IN
STA

D
D

R
6

FPG
A

_IN
STA

D
D

R
7

FPG
A

_IN
STA

D
D

R
8

FPG
A

_IN
STA

D
D

R
9

FPG
A

_IN
STA

D
D

R
10

FPG
A

_IN
STA

D
D

R
11

FPG
A

_IN
STA

D
D

R
12

FPG
A

_IN
STA

D
D

R
13

FPG
A

_IN
STA

D
D

R
14

FPG
A

_IN
STA

D
D

R
15

FPG
A

_IN
STA

D
D

R
16

FPG
A

_IN
STA

D
D

R
17

FPG
A

_IN
STA

D
D

R
18

FPG
A

.W
R

ITE

FPG
A

FPG
A

_IN
ST_LB

U
B

IN
ST_M

EM
0.W

R
ITE

IN
ST_M

EM
0.EN

A
B

LE

D
A

TA
_M

EM
.W

R
ITE

D
A

TA
_M

EM
.EN

A
B

LE

D
A

TA
_M

EM

FPG
A

_IN
STA

D
D

R
[0..18]

IN
ST_M

EM
0

G
N

D

3.3V

JTA
G

.TC
K

JTA
G

.TD
I

JTA
G

.TD
O

JTA
G

.TM
S

TC
K

TD
I

TM
S

TD
O

FPG
A

 JTA
G

JTA
G

IN
IT

IN
IT

C
LK

C
LK

C
LK

C
LK

FPG
A

_H
EA

D
ER

0
FPG

A
_H

EA
D

ER
1

FPG
A

_H
EA

D
ER

3
FPG

A
_H

EA
D

ER
4

FPG
A

_H
EA

D
ER

5
FPG

A
_H

EA
D

ER
6

FPG
A

_H
EA

D
ER

7
FPG

A
_H

EA
D

ER
8

FPG
A

_H
EA

D
ER

9

FPG
A

_H
EA

D
ER

10

FPG
A

_H
EA

D
ER

11
FPG

A
_H

EA
D

ER
12

FPG
A

_H
EA

D
ER

13
FPG

A
_H

EA
D

ER
14

FPG
A

_H
EA

D
ER

15
FPG

A
_H

EA
D

ER
16

FPG
A

_H
EA

D
ER

17
FPG

A
_H

EA
D

ER
18

FPG
A

_H
EA

D
ER

19
FPG

A
_H

EA
D

ER
20

FPG
A

_H
EA

D
ER

21
FPG

A
_H

EA
D

ER
22

FPG
A

_H
EA

D
ER

23
FPG

A
_H

EA
D

ER
24

FPG
A

_H
EA

D
ER

25

FPG
A

_IN
ST_LB

U
B

IN
ST_M

EM
1.W

R
ITE

FPG
A

_H
EA

D
ER

28
FPG

A
_H

EA
D

ER
29

FPG
A

_H
EA

D
ER

30
FPG

A
_H

EA
D

ER
31

FPG
A

_H
EA

D
ER

32
FPG

A
_H

EA
D

ER
33

FPG
A

_H
EA

D
ER

34
FPG

A
_H

EA
D

ER
35

FPG
A

_H
EA

D
ER

36
FPG

A
_H

EA
D

ER
37

FPG
A

_H
EA

D
ER

38
FPG

A
_H

EA
D

ER
39

FPG
A

_H
EA

D
ER

40

FPG
A

_H
EA

D
ER

41
FPG

A
_H

EA
D

ER
42

FPG
A

_H
EA

D
ER

43
FPG

A
_H

EA
D

ER
44

FPG
A

_H
EA

D
ER

45
FPG

A
_H

EA
D

ER
46

FPG
A

_H
EA

D
ER

47

FPG
A

_H
EA

D
ER

48

FPG
A

_H
EA

D
ER

49
FPG

A
_H

EA
D

ER
50

FPG
A

_H
EA

D
ER

51
FPG

A
_H

EA
D

ER
52

FPG
A

_H
EA

D
ER

53
FPG

A
_H

EA
D

ER
54

FPG
A

_H
EA

D
ER

55
FPG

A
_H

EA
D

ER
56

FPG
A

_H
EA

D
ER

57
FPG

A
_H

EA
D

ER
58

FPG
A

_H
EA

D
ER

59
FPG

A
_H

EA
D

ER
60

FPG
A

_H
EA

D
ER

61
FPG

A
_H

EA
D

ER
62

FPG
A

_H
EA

D
ER

64

D
A

TA
_M

EM
.LB

U
B

FPG
A

_H
EA

D
ER

66
FPG

A
_H

EA
D

ER
67

FPG
A

_H
EA

D
ER

68
FPG

A
_H

EA
D

ER
69

FPG
A

_H
EA

D
ER

70
FPG

A
_H

EA
D

ER
71

FPG
A

_H
EA

D
ER

72
FPG

A
_H

EA
D

ER
73

FPG
A

_H
EA

D
ER

74
FPG

A
_H

EA
D

ER
75

FPG
A

_H
EA

D
ER

76
FPG

A
_H

EA
D

ER
77

FPG
A

_H
EA

D
ER

78
FPG

A
_H

EA
D

ER
79

FPG
A

_H
EA

D
ER

80
FPG

A
_H

EA
D

ER
81

FPG
A

_H
EA

D
ER

82
FPG

A
_H

EA
D

ER
83

FPG
A

_H
EA

D
ER

2

FPG
A

_H
EA

D
ER

[0..83]

W
R

ITE
EN

A
B

LE

A
D

D
R

[0..18]
B

U
S[0..15]

LB
U

B

M
EM

O
R

Y

W
R

ITE
EN

A
B

LE

A
D

D
R

[0..18]
B

U
S[0..15]

LB
U

B

M
EM

O
R

Y

W
R

ITE
EN

A
B

LE

A
D

D
R

[0..18]
STA

TE[0..1]

B
U

S[0..15]

LB
U

B
PR

O
C

EN

FPG
A

D
A

TA
_M

EM
.B

U
S0

D
A

TA
_M

EM
.B

U
S1

D
A

TA
_M

EM
.B

U
S2

D
A

TA
_M

EM
.B

U
S3

D
A

TA
_M

EM
.B

U
S4

D
A

TA
_M

EM
.B

U
S5

D
A

TA
_M

EM
.B

U
S6

D
A

TA
_M

EM
.B

U
S7

D
A

TA
_M

EM
.B

U
S8

D
A

TA
_M

EM
.B

U
S9

D
A

TA
_M

EM
.B

U
S10

D
A

TA
_M

EM
.B

U
S11

D
A

TA
_M

EM
.B

U
S12

D
A

TA
_M

EM
.B

U
S13

D
A

TA
_M

EM
.B

U
S14

D
A

TA
_M

EM
.B

U
S15

D
A

TA
_M

EM
.A

D
D

R
0

D
A

TA
_M

EM
.A

D
D

R
1

D
A

TA
_M

EM
.A

D
D

R
2

D
A

TA
_M

EM
.A

D
D

R
3

D
A

TA
_M

EM
.A

D
D

R
4

D
A

TA
_M

EM
.A

D
D

R
5

D
A

TA
_M

EM
.A

D
D

R
6

D
A

TA
_M

EM
.A

D
D

R
7

D
A

TA
_M

EM
.A

D
D

R
8

D
A

TA
_M

EM
.A

D
D

R
9

D
A

TA
_M

EM
.A

D
D

R
10

D
A

TA
_M

EM
.A

D
D

R
11

D
A

TA
_M

EM
.A

D
D

R
12

D
A

TA
_M

EM
.A

D
D

R
13

D
A

TA
_M

EM
.A

D
D

R
14

D
A

TA
_M

EM
.A

D
D

R
15

D
A

TA
_M

EM
.A

D
D

R
16

D
A

TA
_M

EM
.A

D
D

R
17

D
A

TA
_M

EM
.A

D
D

R
18

D
A

TA
_M

EM

FPG
A

IN
ST_M

EM
0

JTA
G

FPG
A

.B
U

S0
FPG

A
.B

U
S1

FPG
A

.B
U

S2
FPG

A
.B

U
S3

FPG
A

.B
U

S4

FPG
A

.B
U

S5
FPG

A
.B

U
S6

FPG
A

.B
U

S7
FPG

A
.B

U
S8

FPG
A

.B
U

S9
FPG

A
.B

U
S10

FPG
A

.B
U

S11
FPG

A
.B

U
S12

FPG
A

.B
U

S13
FPG

A
.B

U
S14

FPG
A

.B
U

S15

FPG
A

.A
D

D
R

0
FPG

A
.A

D
D

R
1

FPG
A

.A
D

D
R

2
FPG

A
.A

D
D

R
3

FPG
A

.A
D

D
R

4
FPG

A
.A

D
D

R
5

FPG
A

.A
D

D
R

6
FPG

A
.A

D
D

R
7

FPG
A

.A
D

D
R

8
FPG

A
.A

D
D

R
9

FPG
A

.A
D

D
R

10

FPG
A

.A
D

D
R

11
FPG

A
.A

D
D

R
12

FPG
A

.A
D

D
R

13
FPG

A
.A

D
D

R
14

FPG
A

.A
D

D
R

15
FPG

A
.A

D
D

R
16

FPG
A

.A
D

D
R

17

FPG
A

.A
D

D
R

18
FPG

A
.LB

U
B

FPG
A

.STA
TE0

FPG
A

.STA
TE1

FPG
A

.PR
O

C
EN

IN
ST_M

EM
0.B

U
S0

IN
ST_M

EM
0.B

U
S1

IN
ST_M

EM
0.B

U
S2

IN
ST_M

EM
0.B

U
S3

IN
ST_M

EM
0.B

U
S4

IN
ST_M

EM
0.B

U
S5

IN
ST_M

EM
0.B

U
S6

IN
ST_M

EM
0.B

U
S7

IN
ST_M

EM
0.B

U
S8

IN
ST_M

EM
0.B

U
S9

IN
ST_M

EM
0.B

U
S10

IN
ST_M

EM
0.B

U
S11

IN
ST_M

EM
0.B

U
S12

IN
ST_M

EM
0.B

U
S13

IN
ST_M

EM
0.B

U
S14

IN
ST_M

EM
0.B

U
S15

IN
ST_M

EM
1.B

U
S0

IN
ST_M

EM
1.B

U
S1

IN
ST_M

EM
1.B

U
S2

IN
ST_M

EM
1.B

U
S3

IN
ST_M

EM
1.B

U
S4

IN
ST_M

EM
1.B

U
S5

IN
ST_M

EM
1.B

U
S6

IN
ST_M

EM
1.B

U
S7

IN
ST_M

EM
1.B

U
S8

IN
ST_M

EM
1.B

U
S9

IN
ST_M

EM
1.B

U
S10

IN
ST_M

EM
1.B

U
S11

IN
ST_M

EM
1.B

U
S12

IN
ST_M

EM
1.B

U
S13

IN
ST_M

EM
1.B

U
S14

IN
ST_M

EM
1.B

U
S15

W
R

ITE
EN

A
B

LE

A
D

D
R

[0..18]
B

U
S[0..15]

LB
U

B

M
EM

O
R

Y

IN
ST_M

EM
1

IN
ST_M

EM
1

FPG
A

_H
EA

D
ER

[0..83]

330R
R

1
330R
R

2
330R
R

3

IN
ST_M

EM
1.EN

A
B

LE

FPG
A

_H
EA

D
ER

26

FPG
A

_H
EA

D
ER

27

FPG
A

_H
EA

D
ER

63

FPG
A

_H
EA

D
ER

65

407fdd40

FPG
A

P
I
F
P
G
A
0
A
2

P
I
F
P
G
A
0
A
3

P
I
F
P
G
A
0
A
4

P
I
F
P
G
A
0
A
5

P
I
F
P
G
A
0
A
6

P
I
F
P
G
A
0
A
7

P
I
F
P
G
A
0
A
8

P
I
F
P
G
A
0
A
9

P
I
F
P
G
A
0
A
1
0

P
I
F
P
G
A
0
A
1
1

P
I
F
P
G
A
0
A
1
2

P
I
F
P
G
A
0
A
1
3

P
I
F
P
G
A
0
A
1
4

P
I
F
P
G
A
0
A
1
5

P
I
F
P
G
A
0
A
1
6

P
I
F
P
G
A
0
B
2

P
I
F
P
G
A
0
B
3

P
I
F
P
G
A
0
B
4

P
I
F
P
G
A
0
B
6

P
I
F
P
G
A
0
B
8

P
I
F
P
G
A
0
B
9

P
I
F
P
G
A
0
B
1
1

P
I
F
P
G
A
0
B
1
2

P
I
F
P
G
A
0
B
1
4

P
I
F
P
G
A
0
B
1
6

P
I
F
P
G
A
0
C
4

P
I
F
P
G
A
0
C
5

P
I
F
P
G
A
0
C
6

P
I
F
P
G
A
0
C
7

P
I
F
P
G
A
0
C
8

P
I
F
P
G
A
0
C
9

P
I
F
P
G
A
0
C
1
0

P
I
F
P
G
A
0
C
1
1

P
I
F
P
G
A
0
C
1
3

P
I
F
P
G
A
0
C
1
4

P
I
F
P
G
A
0
C
1
5

P
I
F
P
G
A
0
D
4

P
I
F
P
G
A
0
D
6

P
I
F
P
G
A
0
D
8

P
I
F
P
G
A
0
D
9

P
I
F
P
G
A
0
D
1
1

P
I
F
P
G
A
0
D
1
4

P
I
F
P
G
A
0
E
1
3

P
I
F
P
G
A
0
F
9

P
I
F
P
G
A
0
F
1
3

P
I
F
P
G
A
0
G
9

COFPGAA

P
I
F
P
G
A
0
C
1
7

P
I
F
P
G
A
0
C
1
8

P
I
F
P
G
A
0
D
1
7

P
I
F
P
G
A
0
D
1
8

P
I
F
P
G
A
0
E
1
6

P
I
F
P
G
A
0
E
1
8

P
I
F
P
G
A
0
F
1
4

P
I
F
P
G
A
0
F
1
5

P
I
F
P
G
A
0
F
1
6

P
I
F
P
G
A
0
F
1
7

P
I
F
P
G
A
0
F
1
8

P
I
F
P
G
A
0
G
1
3

P
I
F
P
G
A
0
G
1
4

P
I
F
P
G
A
0
G
1
6

P
I
F
P
G
A
0
G
1
8

P
I
F
P
G
A
0
H
1
2

P
I
F
P
G
A
0
H
1
3

P
I
F
P
G
A
0
H
1
4

P
I
F
P
G
A
0
H
1
5

P
I
F
P
G
A
0
H
1
6

P
I
F
P
G
A
0
H
1
7

P
I
F
P
G
A
0
H
1
8

P
I
F
P
G
A
0
J
1
3

P
I
F
P
G
A
0
J
1
6

P
I
F
P
G
A
0
J
1
8

P
I
F
P
G
A
0
K
1
2

P
I
F
P
G
A
0
K
1
3

P
I
F
P
G
A
0
K
1
4

P
I
F
P
G
A
0
K
1
5

P
I
F
P
G
A
0
K
1
6

P
I
F
P
G
A
0
K
1
7

P
I
F
P
G
A
0
K
1
8

P
I
F
P
G
A
0
L
1
2

P
I
F
P
G
A
0
L
1
3

P
I
F
P
G
A
0
L
1
4

P
I
F
P
G
A
0
L
1
5

P
I
F
P
G
A
0
L
1
6

P
I
F
P
G
A
0
L
1
7

P
I
F
P
G
A
0
L
1
8

P
I
F
P
G
A
0
M
1
3

P
I
F
P
G
A
0
M
1
4

P
I
F
P
G
A
0
M
1
6

P
I
F
P
G
A
0
M
1
8

P
I
F
P
G
A
0
N
1
4

P
I
F
P
G
A
0
N
1
5

P
I
F
P
G
A
0
N
1
6

P
I
F
P
G
A
0
N
1
7

P
I
F
P
G
A
0
N
1
8

P
I
F
P
G
A
0
P
1
5

P
I
F
P
G
A
0
P
1
6

P
I
F
P
G
A
0
P
1
7

P
I
F
P
G
A
0
P
1
8

P
I
F
P
G
A
0
T
1
7

P
I
F
P
G
A
0
T
1
8

P
I
F
P
G
A
0
U
1
7

P
I
F
P
G
A
0
U
1
8

COFPGAB

P
I
F
P
G
A
0
M
8

P
I
F
P
G
A
0
M
1
0

P
I
F
P
G
A
0
M
1
1

P
I
F
P
G
A
0
N
5

P
I
F
P
G
A
0
N
6

P
I
F
P
G
A
0
N
7

P
I
F
P
G
A
0
N
8

P
I
F
P
G
A
0
N
9

P
I
F
P
G
A
0
N
1
0

P
I
F
P
G
A
0
N
1
1

P
I
F
P
G
A
0
N
1
2

P
I
F
P
G
A
0
P
6

P
I
F
P
G
A
0
P
7

P
I
F
P
G
A
0
P
8

P
I
F
P
G
A
0
P
1
1

P
I
F
P
G
A
0
P
1
2

P
I
F
P
G
A
0
R
3

P
I
F
P
G
A
0
R
5

P
I
F
P
G
A
0
R
7

P
I
F
P
G
A
0
R
8

P
I
F
P
G
A
0
R
1
0

P
I
F
P
G
A
0
R
1
1

P
I
F
P
G
A
0
R
1
3

P
I
F
P
G
A
0
R
1
5

P
I
F
P
G
A
0
T
3

P
I
F
P
G
A
0
T
4

P
I
F
P
G
A
0
T
5

P
I
F
P
G
A
0
T
6

P
I
F
P
G
A
0
T
7

P
I
F
P
G
A
0
T
8

P
I
F
P
G
A
0
T
9

P
I
F
P
G
A
0
T
1
0

P
I
F
P
G
A
0
T
1
1

P
I
F
P
G
A
0
T
1
2

P
I
F
P
G
A
0
T
1
3

P
I
F
P
G
A
0
T
1
4

P
I
F
P
G
A
0
T
1
5

P
I
F
P
G
A
0
U
3

P
I
F
P
G
A
0
U
5

P
I
F
P
G
A
0
U
7

P
I
F
P
G
A
0
U
8

P
I
F
P
G
A
0
U
1
0

P
I
F
P
G
A
0
U
1
1

P
I
F
P
G
A
0
U
1
3

P
I
F
P
G
A
0
U
1
5

P
I
F
P
G
A
0
U
1
6

PIFPGA0V3

P
I
F
P
G
A
0
V
4

P
I
F
P
G
A
0
V
5

P
I
F
P
G
A
0
V
6

P
I
F
P
G
A
0
V
7

P
I
F
P
G
A
0
V
8

P
I
F
P
G
A
0
V
9

P
I
F
P
G
A
0
V
1
0

P
I
F
P
G
A
0
V
1
1

P
I
F
P
G
A
0
V
1
2

P
I
F
P
G
A
0
V
1
3

P
I
F
P
G
A
0
V
1
4

P
I
F
P
G
A
0
V
1
5

P
I
F
P
G
A
0
V
1
6

COFPGAC

P
I
F
P
G
A
0
C
1

P
I
F
P
G
A
0
C
2

P
I
F
P
G
A
0
D
1

P
I
F
P
G
A
0
D
2

P
I
F
P
G
A
0
D
3

P
I
F
P
G
A
0
E
1

P
I
F
P
G
A
0
E
3

P
I
F
P
G
A
0
E
4

P
I
F
P
G
A
0
F
1

P
I
F
P
G
A
0
F
2

P
I
F
P
G
A
0
F
3

P
I
F
P
G
A
0
F
4

P
I
F
P
G
A
0
F
5

P
I
F
P
G
A
0
F
6

P
I
F
P
G
A
0
G
1

P
I
F
P
G
A
0
G
3

P
I
F
P
G
A
0
G
6

P
I
F
P
G
A
0
H
1

P
I
F
P
G
A
0
H
2

P
I
F
P
G
A
0
H
3

P
I
F
P
G
A
0
H
4

P
I
F
P
G
A
0
H
5

P
I
F
P
G
A
0
H
6

P
I
F
P
G
A
0
H
7

P
I
F
P
G
A
0
J
1

P
I
F
P
G
A
0
J
3

P
I
F
P
G
A
0
J
6

P
I
F
P
G
A
0
J
7

P
I
F
P
G
A
0
K
1

P
I
F
P
G
A
0
K
2

P
I
F
P
G
A
0
K
3

P
I
F
P
G
A
0
K
4

P
I
F
P
G
A
0
K
5

P
I
F
P
G
A
0
K
6

P
I
F
P
G
A
0
L
1

P
I
F
P
G
A
0
L
2

P
I
F
P
G
A
0
L
3

P
I
F
P
G
A
0
L
4

P
I
F
P
G
A
0
L
5

P
I
F
P
G
A
0
L
6

P
I
F
P
G
A
0
L
7

P
I
F
P
G
A
0
M
1

P
I
F
P
G
A
0
M
3

P
I
F
P
G
A
0
M
5

P
I
F
P
G
A
0
N
1

P
I
F
P
G
A
0
N
2

P
I
F
P
G
A
0
N
3

P
I
F
P
G
A
0
N
4

P
I
F
P
G
A
0
P
1

P
I
F
P
G
A
0
P
2

P
I
F
P
G
A
0
P
3

P
I
F
P
G
A
0
P
4

P
I
F
P
G
A
0
T
1

P
I
F
P
G
A
0
T
2

P
I
F
P
G
A
0
U
1

P
I
F
P
G
A
0
U
2

COFPGAD

P
I
F
P
G
A
0
A
1
7

PIFPGA0B18

P
I
F
P
G
A
0
D
1
5

PIFPGA0D16

P
I
F
P
G
A
0
P
1
3

P
I
F
P
G
A
0
R
1
6

P
I
F
P
G
A
0
V
2

P
I
F
P
G
A
0
V
1
7 COFPGAE

P
I
F
P
G
A
0
B
1

P
I
F
P
G
A
0
B
5

P
I
F
P
G
A
0
B
1
0

P
I
F
P
G
A
0
B
1
5

P
I
F
P
G
A
0
B
1
7

P
I
F
P
G
A
0
D
7

P
I
F
P
G
A
0
D
1
3

P
I
F
P
G
A
0
E
2

P
I
F
P
G
A
0
E
5

P
I
F
P
G
A
0
E
9

P
I
F
P
G
A
0
E
1
0

P
I
F
P
G
A
0
E
1
4

PIFPGA0E17

P
I
F
P
G
A
0
G
4

P
I
F
P
G
A
0
G
7

P
I
F
P
G
A
0
G
1
0

PIFPGA0G15

P
I
F
P
G
A
0
H
9

P
I
F
P
G
A
0
H
1
1

P
I
F
P
G
A
0
J
2

P
I
F
P
G
A
0
J
5

P
I
F
P
G
A
0
J
8

P
I
F
P
G
A
0
J
1
0

P
I
F
P
G
A
0
J
1
2

P
I
F
P
G
A
0
J
1
4

P
I
F
P
G
A
0
J
1
7

PIFPGA0K7

P
I
F
P
G
A
0
K
9

P
I
F
P
G
A
0
K
1
1

P
I
F
P
G
A
0
L
8

P
I
F
P
G
A
0
L
1
0

P
I
F
P
G
A
0
M
4

P
I
F
P
G
A
0
M
7

PIFPGA0M9

P
I
F
P
G
A
0
M
1
2

P
I
F
P
G
A
0
M
1
5

P
I
F
P
G
A
0
P
5

P
I
F
P
G
A
0
P
9

P
I
F
P
G
A
0
P
1
0

P
I
F
P
G
A
0
P
1
4

P
I
F
P
G
A
0
R
2

P
I
F
P
G
A
0
R
6

P
I
F
P
G
A
0
R
1
2

P
I
F
P
G
A
0
R
1
7

P
I
F
P
G
A
0
U
4

P
I
F
P
G
A
0
U
9

P
I
F
P
G
A
0
U
1
4 COFPGAF

P
I
F
P
G
A
0
A
1

P
I
F
P
G
A
0
A
1
8

P
I
F
P
G
A
0
B
7

P
I
F
P
G
A
0
B
1
3

P
I
F
P
G
A
0
C
3

P
I
F
P
G
A
0
C
1
6

PIFPGA0D5

P
I
F
P
G
A
0
D
1
0

PIFPGA0E15

P
I
F
P
G
A
0
G
2

P
I
F
P
G
A
0
G
5

P
I
F
P
G
A
0
G
1
2

P
I
F
P
G
A
0
G
1
7

P
I
F
P
G
A
0
H
8

P
I
F
P
G
A
0
H
1
0

P
I
F
P
G
A
0
J
4

P
I
F
P
G
A
0
J
9

P
I
F
P
G
A
0
J
1
1

P
I
F
P
G
A
0
J
1
5

P
I
F
P
G
A
0
K
8

P
I
F
P
G
A
0
K
1
0

P
I
F
P
G
A
0
L
9

P
I
F
P
G
A
0
L
1
1

P
I
F
P
G
A
0
M
2

P
I
F
P
G
A
0
M
6

P
I
F
P
G
A
0
M
1
7

PIFPGA0N13
PIFPGA0R1

P
I
F
P
G
A
0
R
4

P
I
F
P
G
A
0
R
9

P
I
F
P
G
A
0
R
1
4

P
I
F
P
G
A
0
R
1
8

P
I
F
P
G
A
0
T
1
6

P
I
F
P
G
A
0
U
6

P
I
F
P
G
A
0
U
1
2

P
I
F
P
G
A
0
V
1

P
I
F
P
G
A
0
V
1
8

COFPGAG

P
I
F
P
G
A
0
C
1
2

P
I
F
P
G
A
0
D
1
2

P
I
F
P
G
A
0
E
6

P
I
F
P
G
A
0
E
7

P
I
F
P
G
A
0
E
8

P
I
F
P
G
A
0
E
1
1

P
I
F
P
G
A
0
E
1
2

P
I
F
P
G
A
0
F
7

P
I
F
P
G
A
0
F
8

P
I
F
P
G
A
0
F
1
0

P
I
F
P
G
A
0
F
1
1

P
I
F
P
G
A
0
F
1
2

P
I
F
P
G
A
0
G
8

P
I
F
P
G
A
0
G
1
1 COFPGAH

PIR101 PIR102COR1

PIR201 PIR202COR2

PIR301 PIR302COR3

P
I
F
P
G
A
0
G
7

P
I
F
P
G
A
0
H
9

P
I
F
P
G
A
0
H
1
1

P
I
F
P
G
A
0
J
8

P
I
F
P
G
A
0
J
1
0

P
I
F
P
G
A
0
K
9

P
I
F
P
G
A
0
K
1
1

P
I
F
P
G
A
0
L
8

P
I
F
P
G
A
0
L
1
0

P
I
F
P
G
A
0
M
7

P
I
F
P
G
A
0
M
1
2

P
I
F
P
G
A
0
B
1

P
I
F
P
G
A
0
B
5

P
I
F
P
G
A
0
B
1
0

P
I
F
P
G
A
0
B
1
5

P
I
F
P
G
A
0
B
1
7

P
I
F
P
G
A
0
D
7

P
I
F
P
G
A
0
D
1
3

P
I
F
P
G
A
0
E
2

P
I
F
P
G
A
0
E
5

P
I
F
P
G
A
0
E
9

P
I
F
P
G
A
0
E
1
0

P
I
F
P
G
A
0
E
1
4

PIFPGA0E17

P
I
F
P
G
A
0
G
4

P
I
F
P
G
A
0
G
1
0

PIFPGA0G15

P
I
F
P
G
A
0
J
2

P
I
F
P
G
A
0
J
5

P
I
F
P
G
A
0
J
1
2

P
I
F
P
G
A
0
J
1
4

P
I
F
P
G
A
0
J
1
7

PIFPGA0K7

P
I
F
P
G
A
0
M
4

PIFPGA0M9

P
I
F
P
G
A
0
M
1
5

P
I
F
P
G
A
0
P
5

P
I
F
P
G
A
0
P
9

P
I
F
P
G
A
0
P
1
0

P
I
F
P
G
A
0
P
1
4

P
I
F
P
G
A
0
R
2

P
I
F
P
G
A
0
R
6

P
I
F
P
G
A
0
R
1
2

P
I
F
P
G
A
0
R
1
7

P
I
F
P
G
A
0
U
4

P
I
F
P
G
A
0
U
9

P
I
F
P
G
A
0
U
1
4

PIR102
PIR202

PIR302

P
I
F
P
G
A
0
D
9

P
I
F
P
G
A
0
R
1
0

NLCLK
P
O
C
L
K

P
I
F
P
G
A
0
N
1
4

NLFPGA0INST0LBUB

NLINST0MEM0
NLINST0MEM1

P
O
I
N
S
T
0
M
E
M
0

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
A
1

P
I
F
P
G
A
0
A
1
8

P
I
F
P
G
A
0
B
7

P
I
F
P
G
A
0
B
1
3

P
I
F
P
G
A
0
C
3

P
I
F
P
G
A
0
C
1
6

PIFPGA0D5

P
I
F
P
G
A
0
D
1
0

PIFPGA0E15

P
I
F
P
G
A
0
G
2

P
I
F
P
G
A
0
G
5

P
I
F
P
G
A
0
G
1
2

P
I
F
P
G
A
0
G
1
7

P
I
F
P
G
A
0
H
8

P
I
F
P
G
A
0
H
1
0

P
I
F
P
G
A
0
J
4

P
I
F
P
G
A
0
J
9

P
I
F
P
G
A
0
J
1
1

P
I
F
P
G
A
0
J
1
5

P
I
F
P
G
A
0
K
8

P
I
F
P
G
A
0
K
1
0

P
I
F
P
G
A
0
L
9

P
I
F
P
G
A
0
L
1
1

P
I
F
P
G
A
0
M
2

P
I
F
P
G
A
0
M
6

P
I
F
P
G
A
0
M
1
7

PIFPGA0N13

P
I
F
P
G
A
0
P
1
3

PIFPGA0R1

P
I
F
P
G
A
0
R
4

P
I
F
P
G
A
0
R
9

P
I
F
P
G
A
0
R
1
4

P
I
F
P
G
A
0
R
1
6

P
I
F
P
G
A
0
R
1
8

P
I
F
P
G
A
0
T
1
6

P
I
F
P
G
A
0
U
6

P
I
F
P
G
A
0
U
1
2

P
I
F
P
G
A
0
V
1

P
I
F
P
G
A
0
V
1
8

P
I
F
P
G
A
0
U
3

PIR301

NLINIT

P
I
F
P
G
A
0
J
6

NLDATA0MEM

NLDATA0MEM0LBUB

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
J
7

NLDATA0MEM

N
L
D
A
T
A
0
M
E
M
0
E
N
A
B
L
E

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
G
1

NLDATA0MEM

NLDATA0MEM0WRITE

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
L
1
4

NLINST0MEM0

NLINST0MEM00ENABLE

P
O
I
N
S
T
0
M
E
M
0

P
I
F
P
G
A
0
P
1
5

NLINST0MEM0

NLINST0MEM00WRITE

P
O
I
N
S
T
0
M
E
M
0

PIFPGA0D16

NLJTAG

NLJTAG0TDO

P
O
J
T
A
G

PIFPGA0B18

NLJTAG

NLJTAG0TMS

P
O
J
T
A
G

P
I
F
P
G
A
0
D
1
5

NLJTAG

NLJTAG0TDI

P
O
J
T
A
G

P
I
F
P
G
A
0
A
1
7

NLJTAG

NLJTAG0TCK

P
O
J
T
A
G

P
I
F
P
G
A
0
N
7

NLFPGA

NLFPGA0PROCEN

P
O
F
P
G
A

P
I
F
P
G
A
0
A
1
1

NLFPGA

NLFPGA0LBUB

P
O
F
P
G
A

NLFPGA
P
O
F
P
G
A

P
I
F
P
G
A
0
P
8

NLFPGA

NLFPGA0WRITE

P
O
F
P
G
A

P
I
F
P
G
A
0
M
1
3

NLINST0MEM1

NLINST0MEM10ENABLE

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
P
1
6

NLINST0MEM1

NLINST0MEM10WRITE

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
C
1
2

P
I
F
P
G
A
0
D
1
2

P
I
F
P
G
A
0
E
6

P
I
F
P
G
A
0
E
7

P
I
F
P
G
A
0
E
8

P
I
F
P
G
A
0
E
1
1

P
I
F
P
G
A
0
E
1
2

P
I
F
P
G
A
0
F
7

P
I
F
P
G
A
0
F
8

P
I
F
P
G
A
0
F
1
0

P
I
F
P
G
A
0
F
1
1

P
I
F
P
G
A
0
F
1
2

P
I
F
P
G
A
0
G
8

P
I
F
P
G
A
0
G
1
1

P
I
F
P
G
A
0
P
6

P
I
F
P
G
A
0
T
6

P
I
F
P
G
A
0
V
2

PIR101

P
I
F
P
G
A
0
V
1
7

PIR201

P
I
F
P
G
A
0
N
4

NLDATA0MEM

N
L
D
A
T
A
0
M
E
M
0
A
D
D
R
0

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
N
3

NLDATA0MEM

N
L
D
A
T
A
0
M
E
M
0
A
D
D
R
1

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
P
4

NLDATA0MEM

N
L
D
A
T
A
0
M
E
M
0
A
D
D
R
2

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
P
3

NLDATA0MEM

N
L
D
A
T
A
0
M
E
M
0
A
D
D
R
3

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
L
6

NLDATA0MEM

N
L
D
A
T
A
0
M
E
M
0
A
D
D
R
4

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
M
5

NLDATA0MEM

N
L
D
A
T
A
0
M
E
M
0
A
D
D
R
5

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
U
2

NLDATA0MEM

N
L
D
A
T
A
0
M
E
M
0
A
D
D
R
6

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
U
1

NLDATA0MEM

NLDATA0MEM0ADDR7

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
T
2

NLDATA0MEM

N
L
D
A
T
A
0
M
E
M
0
A
D
D
R
8

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
T
1

NLDATA0MEM

N
L
D
A
T
A
0
M
E
M
0
A
D
D
R
9

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
P
2

NLDATA0MEM

N
L
D
A
T
A
0
M
E
M
0
A
D
D
R
1
0

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
P
1

NLDATA0MEM

N
L
D
A
T
A
0
M
E
M
0
A
D
D
R
1
1

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
N
2

NLDATA0MEM

N
L
D
A
T
A
0
M
E
M
0
A
D
D
R
1
2

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
N
1

NLDATA0MEM

N
L
D
A
T
A
0
M
E
M
0
A
D
D
R
1
3

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
M
3

NLDATA0MEM

N
L
D
A
T
A
0
M
E
M
0
A
D
D
R
1
4

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
M
1

NLDATA0MEM

N
L
D
A
T
A
0
M
E
M
0
A
D
D
R
1
5

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
L
2

NLDATA0MEM

N
L
D
A
T
A
0
M
E
M
0
A
D
D
R
1
6

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
L
1

NLDATA0MEM

N
L
D
A
T
A
0
M
E
M
0
A
D
D
R
1
7

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
K
2

NLDATA0MEM

N
L
D
A
T
A
0
M
E
M
0
A
D
D
R
1
8

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
K
1

NLDATA0MEM

NLDATA0MEM0BUS0

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
L
4

NLDATA0MEM

NLDATA0MEM0BUS1

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
L
3

NLDATA0MEM

NLDATA0MEM0BUS2

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
J
3

NLDATA0MEM

NLDATA0MEM0BUS3

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
J
1

NLDATA0MEM

NLDATA0MEM0BUS4

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
H
2

NLDATA0MEM

NLDATA0MEM0BUS5

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
H
1

NLDATA0MEM

NLDATA0MEM0BUS6

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
K
4

NLDATA0MEM

NLDATA0MEM0BUS7

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
K
3

NLDATA0MEM

NLDATA0MEM0BUS8

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
L
5

NLDATA0MEM

NLDATA0MEM0BUS9

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
K
5

NLDATA0MEM

NLDATA0MEM0BUS10

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
H
4

NLDATA0MEM

NLDATA0MEM0BUS11

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
H
3

NLDATA0MEM

NLDATA0MEM0BUS12

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
L
7

NLDATA0MEM

NLDATA0MEM0BUS13

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
K
6

NLDATA0MEM

NLDATA0MEM0BUS14

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
G
3

NLDATA0MEM

NLDATA0MEM0BUS15

P
O
D
A
T
A
0
M
E
M

P
I
F
P
G
A
0
B
2

NLFPGA

NLFPGA0ADDR0

P
O
F
P
G
A

P
I
F
P
G
A
0
A
2

NLFPGA

NLFPGA0ADDR1

P
O
F
P
G
A

P
I
F
P
G
A
0
D
6

NLFPGA

NLFPGA0ADDR2

P
O
F
P
G
A

P
I
F
P
G
A
0
C
6

NLFPGA

NLFPGA0ADDR3

P
O
F
P
G
A

P
I
F
P
G
A
0
B
3

NLFPGA

NLFPGA0ADDR4

P
O
F
P
G
A

P
I
F
P
G
A
0
A
3

NLFPGA

NLFPGA0ADDR5

P
O
F
P
G
A

P
I
F
P
G
A
0
B
4

NLFPGA

NLFPGA0ADDR6

P
O
F
P
G
A

P
I
F
P
G
A
0
A
4

NLFPGA

NLFPGA0ADDR7

P
O
F
P
G
A

P
I
F
P
G
A
0
C
5

NLFPGA

NLFPGA0ADDR8

P
O
F
P
G
A

P
I
F
P
G
A
0
A
5

NLFPGA

NLFPGA0ADDR9

P
O
F
P
G
A

P
I
F
P
G
A
0
B
6

NLFPGA

NLFPGA0ADDR10

P
O
F
P
G
A

P
I
F
P
G
A
0
C
7

NLFPGA

NLFPGA0ADDR11

P
O
F
P
G
A

P
I
F
P
G
A
0
A
7

NLFPGA

NLFPGA0ADDR12

P
O
F
P
G
A

P
I
F
P
G
A
0
D
8

NLFPGA

NLFPGA0ADDR13

P
O
F
P
G
A

P
I
F
P
G
A
0
C
8

NLFPGA

NLFPGA0ADDR14

P
O
F
P
G
A

P
I
F
P
G
A
0
B
8

NLFPGA

NLFPGA0ADDR15

P
O
F
P
G
A

P
I
F
P
G
A
0
A
8

NLFPGA

NLFPGA0ADDR16

P
O
F
P
G
A

P
I
F
P
G
A
0
G
9

NLFPGA

NLFPGA0ADDR17

P
O
F
P
G
A

P
I
F
P
G
A
0
B
1
1

NLFPGA

NLFPGA0ADDR18

P
O
F
P
G
A

P
I
F
P
G
A
0
U
1
5

NLFPGA

NLFPGA0BUS0

P
O
F
P
G
A

P
I
F
P
G
A
0
V
1
5

NLFPGA

NLFPGA0BUS1

P
O
F
P
G
A

P
I
F
P
G
A
0
M
1
1

NLFPGA

NLFPGA0BUS2

P
O
F
P
G
A

P
I
F
P
G
A
0
N
1
1

NLFPGA

NLFPGA0BUS3

P
O
F
P
G
A

P
I
F
P
G
A
0
R
1
1

NLFPGA

NLFPGA0BUS4

P
O
F
P
G
A

P
I
F
P
G
A
0
T
1
2

NLFPGA

NLFPGA0BUS5

P
O
F
P
G
A

P
I
F
P
G
A
0
V
1
2

NLFPGA

NLFPGA0BUS6

P
O
F
P
G
A

P
I
F
P
G
A
0
N
1
0

NLFPGA

NLFPGA0BUS7

P
O
F
P
G
A

P
I
F
P
G
A
0
P
1
1

NLFPGA

NLFPGA0BUS8

P
O
F
P
G
A

P
I
F
P
G
A
0
M
1
0

NLFPGA

NLFPGA0BUS9

P
O
F
P
G
A

P
I
F
P
G
A
0
N
9

NLFPGA

NLFPGA0BUS10

P
O
F
P
G
A

P
I
F
P
G
A
0
U
1
1

NLFPGA

NLFPGA0BUS11

P
O
F
P
G
A

P
I
F
P
G
A
0
V
1
1

NLFPGA

NLFPGA0BUS12

P
O
F
P
G
A

P
I
F
P
G
A
0
M
8

NLFPGA

NLFPGA0BUS13

P
O
F
P
G
A

P
I
F
P
G
A
0
N
8

NLFPGA

NLFPGA0BUS14

P
O
F
P
G
A

P
I
F
P
G
A
0
U
8

NLFPGA

NLFPGA0BUS15

P
O
F
P
G
A

P
I
F
P
G
A
0
U
7

NLFPGA

NLFPGA0STATE0

P
O
F
P
G
A

P
I
F
P
G
A
0
V
7

NLFPGA

NLFPGA0STATE1

P
O
F
P
G
A

P
I
F
P
G
A
0
D
4

NLFPGA0HEADER0000830

NLFPGA0HEADER0

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
C
4

NLFPGA0HEADER0000830

NLFPGA0HEADER1

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
A
6

NLFPGA0HEADER0000830

NLFPGA0HEADER2

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
C
9

NLFPGA0HEADER0000830

NLFPGA0HEADER3

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
B
9

NLFPGA0HEADER0000830

NLFPGA0HEADER4

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
A
9

NLFPGA0HEADER0000830

NLFPGA0HEADER5

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
D
1
1

NLFPGA0HEADER0000830

NLFPGA0HEADER6

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
C
1
1

NLFPGA0HEADER0000830

NLFPGA0HEADER7

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
C
1
0

NLFPGA0HEADER0000830

NLFPGA0HEADER8

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
A
1
0

NLFPGA0HEADER0000830

NLFPGA0HEADER9

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
F
9

NLFPGA0HEADER0000830

NLFPGA0HEADER10

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
B
1
2

NLFPGA0HEADER0000830

NLFPGA0HEADER11

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
A
1
2

NLFPGA0HEADER0000830

NLFPGA0HEADER12

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
C
1
3

NLFPGA0HEADER0000830

NLFPGA0HEADER13

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
A
1
3

NLFPGA0HEADER0000830

NLFPGA0HEADER14

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
B
1
4

NLFPGA0HEADER0000830

NLFPGA0HEADER15

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
A
1
4

NLFPGA0HEADER0000830

NLFPGA0HEADER16

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
F
1
3

NLFPGA0HEADER0000830

NLFPGA0HEADER17

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
E
1
3

NLFPGA0HEADER0000830

NLFPGA0HEADER18

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
C
1
5

NLFPGA0HEADER0000830

NLFPGA0HEADER19

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
A
1
5

NLFPGA0HEADER0000830

NLFPGA0HEADER20

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
D
1
4

NLFPGA0HEADER0000830

NLFPGA0HEADER21

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
C
1
4

NLFPGA0HEADER0000830

NLFPGA0HEADER22

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
B
1
6

NLFPGA0HEADER0000830

NLFPGA0HEADER23

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
A
1
6

NLFPGA0HEADER0000830

NLFPGA0HEADER24

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

NLFPGA0HEADER0000830

NLFPGA0HEADER25

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

NLFPGA0HEADER0000830

NLFPGA0HEADER26

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

NLFPGA0HEADER0000830

NLFPGA0HEADER27

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
R
1
5

NLFPGA0HEADER0000830

NLFPGA0HEADER28

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
T
1
5

NLFPGA0HEADER0000830

NLFPGA0HEADER29

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
U
1
6

NLFPGA0HEADER0000830

NLFPGA0HEADER30

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
V
1
6

NLFPGA0HEADER0000830

NLFPGA0HEADER31

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
R
1
3

NLFPGA0HEADER0000830

NLFPGA0HEADER32

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
T
1
3

NLFPGA0HEADER0000830

NLFPGA0HEADER33

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
T
1
4

NLFPGA0HEADER0000830

NLFPGA0HEADER34

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
V
1
4

NLFPGA0HEADER0000830

NLFPGA0HEADER35

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
N
1
2

NLFPGA0HEADER0000830

NLFPGA0HEADER36

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
P
1
2

NLFPGA0HEADER0000830

NLFPGA0HEADER37

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
U
1
3

NLFPGA0HEADER0000830

NLFPGA0HEADER38

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
V
1
3

NLFPGA0HEADER0000830

NLFPGA0HEADER39

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
T
1
1

NLFPGA0HEADER0000830

NLFPGA0HEADER40

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
T
1
0

NLFPGA0HEADER0000830

NLFPGA0HEADER41

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
U
1
0

NLFPGA0HEADER0000830

NLFPGA0HEADER42

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
V
1
0

NLFPGA0HEADER0000830

NLFPGA0HEADER43

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
R
8

NLFPGA0HEADER0000830

NLFPGA0HEADER44

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
T
8

NLFPGA0HEADER0000830

NLFPGA0HEADER45

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
T
9

NLFPGA0HEADER0000830

NLFPGA0HEADER46

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
V
9

NLFPGA0HEADER0000830

NLFPGA0HEADER47

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
V
8

NLFPGA0HEADER0000830

NLFPGA0HEADER48

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
V
6

NLFPGA0HEADER0000830

NLFPGA0HEADER49

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
R
7

NLFPGA0HEADER0000830

NLFPGA0HEADER50

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
T
7

NLFPGA0HEADER0000830

NLFPGA0HEADER51

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
N
6

NLFPGA0HEADER0000830

NLFPGA0HEADER52

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
P
7

NLFPGA0HEADER0000830

NLFPGA0HEADER53

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
R
5

NLFPGA0HEADER0000830

NLFPGA0HEADER54

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
T
5

NLFPGA0HEADER0000830

NLFPGA0HEADER55

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
U
5

NLFPGA0HEADER0000830

NLFPGA0HEADER56

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
V
5

NLFPGA0HEADER0000830

NLFPGA0HEADER57

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
R
3

NLFPGA0HEADER0000830

NLFPGA0HEADER58

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
T
3

NLFPGA0HEADER0000830

NLFPGA0HEADER59

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
T
4

NLFPGA0HEADER0000830

NLFPGA0HEADER60

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
V
4

NLFPGA0HEADER0000830

NLFPGA0HEADER61

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
N
5

NLFPGA0HEADER0000830

NLFPGA0HEADER62

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

NLFPGA0HEADER0000830

NLFPGA0HEADER63

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0V3

NLFPGA0HEADER0000830

NLFPGA0HEADER64

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

NLFPGA0HEADER0000830

NLFPGA0HEADER65

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
F
2

NLFPGA0HEADER0000830

NLFPGA0HEADER66

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
F
1

NLFPGA0HEADER0000830

NLFPGA0HEADER67

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
H
6

NLFPGA0HEADER0000830

NLFPGA0HEADER68

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
H
5

NLFPGA0HEADER0000830

NLFPGA0HEADER69

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
E
3

NLFPGA0HEADER0000830

NLFPGA0HEADER70

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
E
1

NLFPGA0HEADER0000830

NLFPGA0HEADER71

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
F
4

NLFPGA0HEADER0000830

NLFPGA0HEADER72

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
F
3

NLFPGA0HEADER0000830

NLFPGA0HEADER73

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
D
2

NLFPGA0HEADER0000830

NLFPGA0HEADER74

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
D
1

NLFPGA0HEADER0000830

NLFPGA0HEADER75

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
H
7

NLFPGA0HEADER0000830

NLFPGA0HEADER76

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
G
6

NLFPGA0HEADER0000830

NLFPGA0HEADER77

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
E
4

NLFPGA0HEADER0000830

NLFPGA0HEADER78

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
D
3

NLFPGA0HEADER0000830

NLFPGA0HEADER79

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
F
6

NLFPGA0HEADER0000830

NLFPGA0HEADER80

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
F
5

NLFPGA0HEADER0000830

NLFPGA0HEADER81

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
C
2

NLFPGA0HEADER0000830

NLFPGA0HEADER82

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
C
1

NLFPGA0HEADER0000830

NLFPGA0HEADER83

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
I
F
P
G
A
0
F
1
5

NLFPGA0INSTADDR0000180

NLFPGA0INSTADDR0

NLINST0MEM0
NLINST0MEM1

P
O
I
N
S
T
0
M
E
M
0

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
F
1
6

NLFPGA0INSTADDR0000180

NLFPGA0INSTADDR1

NLINST0MEM0
NLINST0MEM1

P
O
I
N
S
T
0
M
E
M
0

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
C
1
7

NLFPGA0INSTADDR0000180

NLFPGA0INSTADDR2

NLINST0MEM0
NLINST0MEM1

P
O
I
N
S
T
0
M
E
M
0

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
C
1
8

NLFPGA0INSTADDR0000180

NLFPGA0INSTADDR3

NLINST0MEM0
NLINST0MEM1

P
O
I
N
S
T
0
M
E
M
0

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
F
1
4

NLFPGA0INSTADDR0000180

NLFPGA0INSTADDR4

NLINST0MEM0
NLINST0MEM1

P
O
I
N
S
T
0
M
E
M
0

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
G
1
4

NLFPGA0INSTADDR0000180

NLFPGA0INSTADDR5

NLINST0MEM0
NLINST0MEM1

P
O
I
N
S
T
0
M
E
M
0

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
D
1
7

NLFPGA0INSTADDR0000180

NLFPGA0INSTADDR6

NLINST0MEM0
NLINST0MEM1

P
O
I
N
S
T
0
M
E
M
0

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
D
1
8

NLFPGA0INSTADDR0000180

NLFPGA0INSTADDR7

NLINST0MEM0
NLINST0MEM1

P
O
I
N
S
T
0
M
E
M
0

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
H
1
2

NLFPGA0INSTADDR0000180

NLFPGA0INSTADDR8

NLINST0MEM0
NLINST0MEM1

P
O
I
N
S
T
0
M
E
M
0

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
G
1
3

NLFPGA0INSTADDR0000180

NLFPGA0INSTADDR9

NLINST0MEM0
NLINST0MEM1

P
O
I
N
S
T
0
M
E
M
0

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
E
1
6

NLFPGA0INSTADDR0000180

NLFPGA0INSTADDR10

NLINST0MEM0
NLINST0MEM1

P
O
I
N
S
T
0
M
E
M
0

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
E
1
8

NLFPGA0INSTADDR0000180

NLFPGA0INSTADDR11

NLINST0MEM0
NLINST0MEM1

P
O
I
N
S
T
0
M
E
M
0

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
K
1
2

NLFPGA0INSTADDR0000180

NLFPGA0INSTADDR12

NLINST0MEM0
NLINST0MEM1

P
O
I
N
S
T
0
M
E
M
0

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
K
1
3

NLFPGA0INSTADDR0000180

NLFPGA0INSTADDR13

NLINST0MEM0
NLINST0MEM1

P
O
I
N
S
T
0
M
E
M
0

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
F
1
7

NLFPGA0INSTADDR0000180

NLFPGA0INSTADDR14

NLINST0MEM0
NLINST0MEM1

P
O
I
N
S
T
0
M
E
M
0

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
F
1
8

NLFPGA0INSTADDR0000180

NLFPGA0INSTADDR15

NLINST0MEM0
NLINST0MEM1

P
O
I
N
S
T
0
M
E
M
0

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
H
1
3

NLFPGA0INSTADDR0000180

NLFPGA0INSTADDR16

NLINST0MEM0
NLINST0MEM1

P
O
I
N
S
T
0
M
E
M
0

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
H
1
4

NLFPGA0INSTADDR0000180

NLFPGA0INSTADDR17

NLINST0MEM0
NLINST0MEM1

P
O
I
N
S
T
0
M
E
M
0

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
H
1
5

NLFPGA0INSTADDR0000180

NLFPGA0INSTADDR18

NLINST0MEM0
NLINST0MEM1

P
O
I
N
S
T
0
M
E
M
0

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
H
1
6

NLINST0MEM0

NLINST0MEM00BUS0

P
O
I
N
S
T
0
M
E
M
0

P
I
F
P
G
A
0
G
1
6

NLINST0MEM0

NLINST0MEM00BUS1

P
O
I
N
S
T
0
M
E
M
0

P
I
F
P
G
A
0
G
1
8

NLINST0MEM0

NLINST0MEM00BUS2

P
O
I
N
S
T
0
M
E
M
0

P
I
F
P
G
A
0
J
1
3

NLINST0MEM0

NLINST0MEM00BUS3

P
O
I
N
S
T
0
M
E
M
0

P
I
F
P
G
A
0
K
1
4

NLINST0MEM0

NLINST0MEM00BUS4

P
O
I
N
S
T
0
M
E
M
0

P
I
F
P
G
A
0
L
1
2

NLINST0MEM0

NLINST0MEM00BUS5

P
O
I
N
S
T
0
M
E
M
0

P
I
F
P
G
A
0
L
1
3

NLINST0MEM0

NLINST0MEM00BUS6

P
O
I
N
S
T
0
M
E
M
0

P
I
F
P
G
A
0
K
1
5

NLINST0MEM0

NLINST0MEM00BUS7

P
O
I
N
S
T
0
M
E
M
0

P
I
F
P
G
A
0
K
1
6

NLINST0MEM0

NLINST0MEM00BUS8

P
O
I
N
S
T
0
M
E
M
0

P
I
F
P
G
A
0
L
1
5

NLINST0MEM0

NLINST0MEM00BUS9

P
O
I
N
S
T
0
M
E
M
0

P
I
F
P
G
A
0
L
1
6

NLINST0MEM0

NLINST0MEM00BUS10

P
O
I
N
S
T
0
M
E
M
0

P
I
F
P
G
A
0
H
1
7

NLINST0MEM0

NLINST0MEM00BUS11

P
O
I
N
S
T
0
M
E
M
0

P
I
F
P
G
A
0
H
1
8

NLINST0MEM0

NLINST0MEM00BUS12

P
O
I
N
S
T
0
M
E
M
0

P
I
F
P
G
A
0
J
1
6

NLINST0MEM0

NLINST0MEM00BUS13

P
O
I
N
S
T
0
M
E
M
0

P
I
F
P
G
A
0
J
1
8

NLINST0MEM0

NLINST0MEM00BUS14

P
O
I
N
S
T
0
M
E
M
0

P
I
F
P
G
A
0
K
1
7

NLINST0MEM0

NLINST0MEM00BUS15

P
O
I
N
S
T
0
M
E
M
0

P
I
F
P
G
A
0
K
1
8

NLINST0MEM1

NLINST0MEM10BUS0

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
L
1
7

NLINST0MEM1

NLINST0MEM10BUS1

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
L
1
8

NLINST0MEM1

NLINST0MEM10BUS2

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
M
1
6

NLINST0MEM1

NLINST0MEM10BUS3

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
M
1
8

NLINST0MEM1

NLINST0MEM10BUS4

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
N
1
7

NLINST0MEM1

NLINST0MEM10BUS5

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
N
1
8

NLINST0MEM1

NLINST0MEM10BUS6

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
P
1
7

NLINST0MEM1

NLINST0MEM10BUS7

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
P
1
8

NLINST0MEM1

NLINST0MEM10BUS8

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
N
1
5

NLINST0MEM1

NLINST0MEM10BUS9

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
N
1
6

NLINST0MEM1

NLINST0MEM10BUS10

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
T
1
7

NLINST0MEM1

NLINST0MEM10BUS11

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
T
1
8

NLINST0MEM1

NLINST0MEM10BUS12

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
U
1
7

NLINST0MEM1

NLINST0MEM10BUS13

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
U
1
8

NLINST0MEM1

NLINST0MEM10BUS14

P
O
I
N
S
T
0
M
E
M
1

P
I
F
P
G
A
0
M
1
4

NLINST0MEM1

NLINST0MEM10BUS15

P
O
I
N
S
T
0
M
E
M
1 P
O
C
L
K

P
O
D
A
T
A
0
M
E
M

PODATA0MEM0ADDR0
PODATA0MEM0ADDR1
PODATA0MEM0ADDR2
PODATA0MEM0ADDR3
PODATA0MEM0ADDR4
PODATA0MEM0ADDR5
PODATA0MEM0ADDR6
PODATA0MEM0ADDR7
PODATA0MEM0ADDR8
PODATA0MEM0ADDR9
PODATA0MEM0ADDR10
PODATA0MEM0ADDR11
PODATA0MEM0ADDR12
PODATA0MEM0ADDR13
PODATA0MEM0ADDR14
PODATA0MEM0ADDR15
PODATA0MEM0ADDR16
PODATA0MEM0ADDR17
PODATA0MEM0ADDR18
PODATA0MEM0ADDR0000180
PODATA0MEM0BUS0
PODATA0MEM0BUS1
PODATA0MEM0BUS2
PODATA0MEM0BUS3
PODATA0MEM0BUS4
PODATA0MEM0BUS5
PODATA0MEM0BUS6
PODATA0MEM0BUS7
PODATA0MEM0BUS8
PODATA0MEM0BUS9
PODATA0MEM0BUS10
PODATA0MEM0BUS11
PODATA0MEM0BUS12
PODATA0MEM0BUS13
PODATA0MEM0BUS14
PODATA0MEM0BUS15
PODATA0MEM0BUS0000150
PODATA0MEM0ENABLE
PODATA0MEM0LBUB
PODATA0MEM0WRITE

P
O
F
P
G
A

P
O
F
P
G
A
0
A
D
D
R
0

P
O
F
P
G
A
0
A
D
D
R
1

P
O
F
P
G
A
0
A
D
D
R
2

P
O
F
P
G
A
0
A
D
D
R
3

P
O
F
P
G
A
0
A
D
D
R
4

P
O
F
P
G
A
0
A
D
D
R
5

P
O
F
P
G
A
0
A
D
D
R
6

P
O
F
P
G
A
0
A
D
D
R
7

P
O
F
P
G
A
0
A
D
D
R
8

P
O
F
P
G
A
0
A
D
D
R
9

P
O
F
P
G
A
0
A
D
D
R
1
0

P
O
F
P
G
A
0
A
D
D
R
1
1

P
O
F
P
G
A
0
A
D
D
R
1
2

P
O
F
P
G
A
0
A
D
D
R
1
3

P
O
F
P
G
A
0
A
D
D
R
1
4

P
O
F
P
G
A
0
A
D
D
R
1
5

P
O
F
P
G
A
0
A
D
D
R
1
6

P
O
F
P
G
A
0
A
D
D
R
1
7

P
O
F
P
G
A
0
A
D
D
R
1
8

POFPGA0ADDR0000180
P
O
F
P
G
A
0
B
U
S
0

P
O
F
P
G
A
0
B
U
S
1

P
O
F
P
G
A
0
B
U
S
2

P
O
F
P
G
A
0
B
U
S
3

P
O
F
P
G
A
0
B
U
S
4

P
O
F
P
G
A
0
B
U
S
5

P
O
F
P
G
A
0
B
U
S
6

P
O
F
P
G
A
0
B
U
S
7

P
O
F
P
G
A
0
B
U
S
8

P
O
F
P
G
A
0
B
U
S
9

P
O
F
P
G
A
0
B
U
S
1
0

P
O
F
P
G
A
0
B
U
S
1
1

P
O
F
P
G
A
0
B
U
S
1
2

P
O
F
P
G
A
0
B
U
S
1
3

P
O
F
P
G
A
0
B
U
S
1
4

P
O
F
P
G
A
0
B
U
S
1
5

POFPGA0BUS0000150
P
O
F
P
G
A
0
E
N
A
B
L
E

P
O
F
P
G
A
0
L
B
U
B

P
O
F
P
G
A
0
P
R
O
C
E
N

P
O
F
P
G
A
0
S
T
A
T
E
0

P
O
F
P
G
A
0
S
T
A
T
E
1

POFPGA0STATE000010
P
O
F
P
G
A
0
W
R
I
T
E

P
O
F
P
G
A
0
H
E
A
D
E
R
0

P
O
F
P
G
A
0
H
E
A
D
E
R
1

P
O
F
P
G
A
0
H
E
A
D
E
R
2

P
O
F
P
G
A
0
H
E
A
D
E
R
3

P
O
F
P
G
A
0
H
E
A
D
E
R
4

P
O
F
P
G
A
0
H
E
A
D
E
R
5

P
O
F
P
G
A
0
H
E
A
D
E
R
6

P
O
F
P
G
A
0
H
E
A
D
E
R
7

P
O
F
P
G
A
0
H
E
A
D
E
R
8

P
O
F
P
G
A
0
H
E
A
D
E
R
9

P
O
F
P
G
A
0
H
E
A
D
E
R
1
0

P
O
F
P
G
A
0
H
E
A
D
E
R
1
1

P
O
F
P
G
A
0
H
E
A
D
E
R
1
2

P
O
F
P
G
A
0
H
E
A
D
E
R
1
3

P
O
F
P
G
A
0
H
E
A
D
E
R
1
4

P
O
F
P
G
A
0
H
E
A
D
E
R
1
5

P
O
F
P
G
A
0
H
E
A
D
E
R
1
6

P
O
F
P
G
A
0
H
E
A
D
E
R
1
7

P
O
F
P
G
A
0
H
E
A
D
E
R
1
8

P
O
F
P
G
A
0
H
E
A
D
E
R
1
9

P
O
F
P
G
A
0
H
E
A
D
E
R
2
0

P
O
F
P
G
A
0
H
E
A
D
E
R
2
1

P
O
F
P
G
A
0
H
E
A
D
E
R
2
2

P
O
F
P
G
A
0
H
E
A
D
E
R
2
3

P
O
F
P
G
A
0
H
E
A
D
E
R
2
4

P
O
F
P
G
A
0
H
E
A
D
E
R
2
5

P
O
F
P
G
A
0
H
E
A
D
E
R
2
6

P
O
F
P
G
A
0
H
E
A
D
E
R
2
7

P
O
F
P
G
A
0
H
E
A
D
E
R
2
8

P
O
F
P
G
A
0
H
E
A
D
E
R
2
9

P
O
F
P
G
A
0
H
E
A
D
E
R
3
0

P
O
F
P
G
A
0
H
E
A
D
E
R
3
1

P
O
F
P
G
A
0
H
E
A
D
E
R
3
2

P
O
F
P
G
A
0
H
E
A
D
E
R
3
3

P
O
F
P
G
A
0
H
E
A
D
E
R
3
4

P
O
F
P
G
A
0
H
E
A
D
E
R
3
5

P
O
F
P
G
A
0
H
E
A
D
E
R
3
6

P
O
F
P
G
A
0
H
E
A
D
E
R
3
7

P
O
F
P
G
A
0
H
E
A
D
E
R
3
8

P
O
F
P
G
A
0
H
E
A
D
E
R
3
9

P
O
F
P
G
A
0
H
E
A
D
E
R
4
0

P
O
F
P
G
A
0
H
E
A
D
E
R
4
1

P
O
F
P
G
A
0
H
E
A
D
E
R
4
2

P
O
F
P
G
A
0
H
E
A
D
E
R
4
3

P
O
F
P
G
A
0
H
E
A
D
E
R
4
4

P
O
F
P
G
A
0
H
E
A
D
E
R
4
5

P
O
F
P
G
A
0
H
E
A
D
E
R
4
6

P
O
F
P
G
A
0
H
E
A
D
E
R
4
7

P
O
F
P
G
A
0
H
E
A
D
E
R
4
8

P
O
F
P
G
A
0
H
E
A
D
E
R
4
9

P
O
F
P
G
A
0
H
E
A
D
E
R
5
0

P
O
F
P
G
A
0
H
E
A
D
E
R
5
1

P
O
F
P
G
A
0
H
E
A
D
E
R
5
2

P
O
F
P
G
A
0
H
E
A
D
E
R
5
3

P
O
F
P
G
A
0
H
E
A
D
E
R
5
4

P
O
F
P
G
A
0
H
E
A
D
E
R
5
5

P
O
F
P
G
A
0
H
E
A
D
E
R
5
6

P
O
F
P
G
A
0
H
E
A
D
E
R
5
7

P
O
F
P
G
A
0
H
E
A
D
E
R
5
8

P
O
F
P
G
A
0
H
E
A
D
E
R
5
9

P
O
F
P
G
A
0
H
E
A
D
E
R
6
0

P
O
F
P
G
A
0
H
E
A
D
E
R
6
1

P
O
F
P
G
A
0
H
E
A
D
E
R
6
2

P
O
F
P
G
A
0
H
E
A
D
E
R
6
3

P
O
F
P
G
A
0
H
E
A
D
E
R
6
4

P
O
F
P
G
A
0
H
E
A
D
E
R
6
5

P
O
F
P
G
A
0
H
E
A
D
E
R
6
6

P
O
F
P
G
A
0
H
E
A
D
E
R
6
7

P
O
F
P
G
A
0
H
E
A
D
E
R
6
8

P
O
F
P
G
A
0
H
E
A
D
E
R
6
9

P
O
F
P
G
A
0
H
E
A
D
E
R
7
0

P
O
F
P
G
A
0
H
E
A
D
E
R
7
1

P
O
F
P
G
A
0
H
E
A
D
E
R
7
2

P
O
F
P
G
A
0
H
E
A
D
E
R
7
3

P
O
F
P
G
A
0
H
E
A
D
E
R
7
4

P
O
F
P
G
A
0
H
E
A
D
E
R
7
5

P
O
F
P
G
A
0
H
E
A
D
E
R
7
6

P
O
F
P
G
A
0
H
E
A
D
E
R
7
7

P
O
F
P
G
A
0
H
E
A
D
E
R
7
8

P
O
F
P
G
A
0
H
E
A
D
E
R
7
9

P
O
F
P
G
A
0
H
E
A
D
E
R
8
0

P
O
F
P
G
A
0
H
E
A
D
E
R
8
1

P
O
F
P
G
A
0
H
E
A
D
E
R
8
2

P
O
F
P
G
A
0
H
E
A
D
E
R
8
3

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
O
I
N
S
T
0
M
E
M
0

POINST0MEM00ADDR0
POINST0MEM00ADDR1
POINST0MEM00ADDR2
POINST0MEM00ADDR3
POINST0MEM00ADDR4
POINST0MEM00ADDR5
POINST0MEM00ADDR6
POINST0MEM00ADDR7
POINST0MEM00ADDR8
POINST0MEM00ADDR9
POINST0MEM00ADDR10
POINST0MEM00ADDR11
POINST0MEM00ADDR12
POINST0MEM00ADDR13
POINST0MEM00ADDR14
POINST0MEM00ADDR15
POINST0MEM00ADDR16
POINST0MEM00ADDR17
POINST0MEM00ADDR18
POINST0MEM00ADDR0000180
POINST0MEM00BUS0
POINST0MEM00BUS1
POINST0MEM00BUS2
POINST0MEM00BUS3
POINST0MEM00BUS4
POINST0MEM00BUS5
POINST0MEM00BUS6
POINST0MEM00BUS7
POINST0MEM00BUS8
POINST0MEM00BUS9
POINST0MEM00BUS10
POINST0MEM00BUS11
POINST0MEM00BUS12
POINST0MEM00BUS13
POINST0MEM00BUS14
POINST0MEM00BUS15
POINST0MEM00BUS0000150
POINST0MEM00ENABLE
POINST0MEM00LBUB
POINST0MEM00WRITE

P
O
I
N
S
T
0
M
E
M
1

POINST0MEM10ADDR0
POINST0MEM10ADDR1
POINST0MEM10ADDR2
POINST0MEM10ADDR3
POINST0MEM10ADDR4
POINST0MEM10ADDR5
POINST0MEM10ADDR6
POINST0MEM10ADDR7
POINST0MEM10ADDR8
POINST0MEM10ADDR9
POINST0MEM10ADDR10
POINST0MEM10ADDR11
POINST0MEM10ADDR12
POINST0MEM10ADDR13
POINST0MEM10ADDR14
POINST0MEM10ADDR15
POINST0MEM10ADDR16
POINST0MEM10ADDR17
POINST0MEM10ADDR18
POINST0MEM10ADDR0000180
POINST0MEM10BUS0
POINST0MEM10BUS1
POINST0MEM10BUS2
POINST0MEM10BUS3
POINST0MEM10BUS4
POINST0MEM10BUS5
POINST0MEM10BUS6
POINST0MEM10BUS7
POINST0MEM10BUS8
POINST0MEM10BUS9
POINST0MEM10BUS10
POINST0MEM10BUS11
POINST0MEM10BUS12
POINST0MEM10BUS13
POINST0MEM10BUS14
POINST0MEM10BUS15
POINST0MEM10BUS0000150
POINST0MEM10ENABLE
POINST0MEM10LBUB
POINST0MEM10WRITE

P
O
J
T
A
G

P
O
J
T
A
G
0
T
C
K

P
O
J
T
A
G
0
T
D
I

P
O
J
T
A
G
0
T
D
O

P
O
J
T
A
G
0
T
M
S

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

A
4

D
ate:

17.11.2013
Sheet of

File:
C

:\U
sers\..\oscillator.SchD

oc
D

raw
n B

y:

O
scillator TX

C
 7W

Enable C
ontrol

1
G

N
D

2

O
ut

3
V

D
D

4

O
SC

O
scillator TX

C
 7W

G
N

D3.3V
C

LK

3.3V

407fdd40

O
scillator

P
I
O
S
C
0
1

P
I
O
S
C
0
2

P
I
O
S
C
0
3

P
I
O
S
C
0
4 COOSC

P
I
O
S
C
0
1

P
I
O
S
C
0
4

P
I
O
S
C
0
3

P
O
C
L
K

P
I
O
S
C
0
2

P
O
C
L
K

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

A
3

D
ate:

17.11.2013
Sheet of

File:
C

:\U
sers\..\m

icrocontroller.SchD
oc

D
raw

n B
y:

PE15
A

1
PE14

A
2

PE12
A

3

PE9
A

4

PD
10

A
5

PF7
A

6

PF5
A

7

PF12
A

8

PE4
A

9

PF10
A

10

PF11
A

11

PA
15

B
1

PE13
B

2

PE11
B

3

PE8
B

4

PD
11

B
5

PF8
B

6

PF6
B

7

PE5
B

9

PA
1

C
1

PA
0

C
2

PE10
C

3

PD
13

C
4

PD
12

C
5

PF9
C

6

PF2
C

8
PE6

C
9

PC
10

C
10

PC
11

C
11

PA
3

D
1

PA
2

D
2

PB
15

D
3

PD
9

D
6

PF1
D

8

PE7
D

9

PC
8

D
10

PC
9

D
11

PA
6

E1
PA

5
E2

PA
4

E3

PB
0

E4

PF0
E8

PE0
E9

PE1
E10

PE3
E11

PB
1

F1

PB
2

F2

PB
3

F3

PB
4

F4

PE2
F10

D
EC

O
U

PLE
F11

PB
5

G
1

PB
6

G
2

PC
6

G
10

PC
7

G
11

PC
0

H
1

PC
2

H
2

PD
14

H
3

PA
7

H
4

PA
8

H
5

PD
8

H
8

PD
5

H
9

PD
6

H
10

PD
7

H
11

PC
1

J1

PC
3

J2

PD
15

J3

PA
12

J4

PA
9

J5

PA
10

J6
PB

9
J7

PB
10

J8

PD
2

J9

PD
3

J10

PD
4

J11

PB
7

K
1

PC
4

K
2

PA
13

K
3

PA
11

K
5

R
ESETn

K
6

PD
1

K
11

PB
8

L1

PC
5

L2

PA
14

L3

PB
11

L5

PB
12

L6

PB
13

L8

PB
14

L9

PD
0

L11

SC
U

A

EFM
32G

G
390F1024-B

G
A

112

H
_U

SB
_V

B
U

S_EN
A

B
LE

H
EA

D
ER

.U
SB

_D
M

_PU
LLU

P

U
A

R
T1.TX

U
A

R
T1.R

X

H
FX

TA
L.N

H
FX

TA
L.P

H
EA

D
ER

.D
B

G
_SW

C
LK

H
EA

D
ER

.D
B

G
_SW

D
IO

H
EA

D
ER

.D
B

G
_SW

O

H
_LED

0

H
_LED

1
H

_LED
2

H
_LED

3

H
_LED

4

B
O

O
T.R

X
B

O
O

T.TX

H
_FPG

A
_W

R
ITE

H
_FPG

A
_EN

A
B

LE

H
_FPG

A
_STA

TE_0
H

_FPG
A

_STA
TE_1

H
_FPG

A
_PR

O
C

EN

SW
[0..7]

SW
[0..7]

TXR
X

C
TR

L_TX
C

TR
L_R

X

U
A

R
T0LED

[0..15]
LED

[0..15]

U
A

R
T0

W
R

ITE
EN

A
B

LE

A
D

D
R

[0..18]
STA

TE[0..1]

B
U

S[0..15]

LB
U

B
PR

O
C

EN

FPG
A

FPG
A

PN H
FX

TA
L

H
FX

TA
L

TXR
X

U
A

R
T1

U
A

R
T1

V
B

U
S_EN

A
B

LE
D

M

D
P

ID

U
SB

U
SB

TXR
X

B
O

O
T

B
O

O
T

C
S

C
LK

D
O

D
I

SD

SD

U
SB

_D
M

_PU
LLU

P
D

B
G

_SW
C

LK

D
B

G
_SW

D
IO

D
B

G
_SW

O

H
EA

D
ER

H
EA

D
ER

1µF

C
16

G
N

D

R
ESETn

U
_m

icrocontroller_reset_button
m

icrocontroller_reset_button.schdoc

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

SC
U

_FPG
A

_H
_A

H
eader 20X

2

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

SC
U

_LED
_H

H
eader 16X

2

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

SC
U

_SW
_H

H
eader 8X

2

1
2

3
4

5
6

7
8

SC
U

_SD
_H

H
eader 4X

2

1
2

3
4

5
6

7
8

SC
U

_U
SB

_H

H
eader 4X

2

H
_SD

_C
S

H
_SD

_C
LK

H
_SD

_D
O

H
_SD

_D
I

SD
.C

S
SD

.C
LK

SD
.D

O
SD

.D
I

U
SB

.D
M

U
SB

.D
P

U
SB

.ID

U
SB

.V
B

U
S_EN

A
B

LE
H

_U
SB

_V
B

U
S_EN

A
B

LE
H

_U
SB

_D
M

H
_U

SB
_D

P
H

_U
SB

_ID

LED
0

LED
1

LED
2

LED
3

LED
4

LED
5

LED
6

LED
7

LED
8

LED
9

LED
10

LED
11

LED
12

LED
13

LED
14

LED
15

H
_LED

0
H

_LED
1

H
_LED

2
H

_LED
3

H
_LED

4
H

_LED
5

H
_LED

6
H

_LED
7

H
_LED

8
H

_LED
9

H
_LED

10
H

_LED
11

H
_LED

12
H

_LED
13

H
_LED

14
H

_LED
15

H
_B

TN
0

H
_B

TN
1

H
_B

TN
2

H
_B

TN
3

H
_B

TN
4

H
_B

TN
5

H
_B

TN
6

H
_B

TN
7

SW
0

SW
1

SW
2

SW
3

SW
4

SW
5

SW
6

SW
7

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

SC
U

_FPG
A

_H
_B

H
eader 20X

2

1
2

SC
U

_FPG
A

_H
_C

H
eader 2

H
_FPG

A
_A

D
D

R
0

H
_FPG

A
_A

D
D

R
1

H
_FPG

A
_A

D
D

R
2

H
_FPG

A
_A

D
D

R
3

H
_FPG

A
_A

D
D

R
4

H
_FPG

A
_A

D
D

R
5

H
_FPG

A
_A

D
D

R
6

H
_FPG

A
_A

D
D

R
7

H
_FPG

A
_A

D
D

R
8

H
_FPG

A
_A

D
D

R
9

H
_FPG

A
_A

D
D

R
10

H
_FPG

A
_A

D
D

R
11

H
_FPG

A
_A

D
D

R
12

H
_FPG

A
_A

D
D

R
13

H
_FPG

A
_A

D
D

R
14

H
_FPG

A
_A

D
D

R
15

H
_FPG

A
_A

D
D

R
16

H
_FPG

A
_A

D
D

R
17

H
_FPG

A
_A

D
D

R
18

H
_FPG

A
_LB

U
B

H
_FPG

A
_B

U
S0

H
_FPG

A
_B

U
S1

H
_FPG

A
_B

U
S2

H
_FPG

A
_B

U
S3

H
_FPG

A
_B

U
S4

H
_FPG

A
_B

U
S5

H
_FPG

A
_B

U
S6

H
_FPG

A
_B

U
S7

H
_FPG

A
_B

U
S8

H
_FPG

A
_B

U
S9

H
_FPG

A
_B

U
S10

H
_FPG

A
_B

U
S11

H
_FPG

A
_B

U
S12

H
_FPG

A
_B

U
S13

H
_FPG

A
_B

U
S14

H
_FPG

A
_B

U
S15

H
_FPG

A
_W

R
ITE

H
_FPG

A
_EN

A
B

LE
H

_FPG
A

_STA
TE_0

H
_FPG

A
_STA

TE_1

H
_FPG

A
_PR

O
C

EN

V
SS

C
7

V
SS

D
4

IO
V

D
D

_6
D

5
IO

V
D

D
_5

D
7

V
D

D
_D

R
EG

F8
V

SS_D
R

EG
F9

V
SS

G
3

IO
V

D
D

_0
G

4

IO
V

D
D

_4
G

8
V

SS
G

9

V
SS

H
6

IO
V

D
D

_3
H

7

V
SS

K
4

A
V

SS_1
K

7

A
V

D
D

_2
K

8
A

V
D

D
_1

K
9

A
V

SS_0
K

10

IO
V

D
D

_1
L4

A
V

SS_2
L7

A
V

D
D

_0
L10

U
SB

_V
R

EG
I

B
10

U
SB

_V
R

EG
O

B
11

U
SB

_V
B

U
S

B
8

SC
U

B

EFM
32G

G
390F1024-B

G
A

112

G
N

D
3.3V

1µF
C

19
G

N
D

1µF

C
18

G
N

D

4.7µF

C
17

G
N

D H
_FPG

A
_B

U
S0

H
_FPG

A
_B

U
S1

H
_FPG

A
_B

U
S2

H
_FPG

A
_B

U
S3

H
_FPG

A
_B

U
S4

H
_FPG

A
_B

U
S5

H
_FPG

A
_B

U
S6

H
_FPG

A
_B

U
S7

H
_FPG

A
_B

U
S8

H
_FPG

A
_B

U
S9

H
_FPG

A
_B

U
S10

H
_FPG

A
_B

U
S11

H
_FPG

A
_B

U
S12

H
_FPG

A
_B

U
S13

H
_FPG

A
_B

U
S14

H
_FPG

A
_B

U
S15

H
_FPG

A
_A

D
D

R
0

H
_FPG

A
_A

D
D

R
1

H
_FPG

A
_A

D
D

R
2

H
_FPG

A
_A

D
D

R
3

H
_FPG

A
_A

D
D

R
4

H
_FPG

A
_A

D
D

R
5

H
_FPG

A
_A

D
D

R
6

H
_FPG

A
_A

D
D

R
7

H
_FPG

A
_A

D
D

R
8

H
_FPG

A
_A

D
D

R
9

H
_FPG

A
_A

D
D

R
10

H
_FPG

A
_A

D
D

R
11

H
_FPG

A
_A

D
D

R
12

H
_FPG

A
_A

D
D

R
13

H
_FPG

A
_A

D
D

R
14

H
_FPG

A
_A

D
D

R
15

H
_FPG

A
_A

D
D

R
16

H
_FPG

A
_A

D
D

R
17

H
_FPG

A
_A

D
D

R
18

H
_FPG

A
_LB

U
B

H
_SD

_C
S

H
_SD

_C
LK

H
_SD

_D
O

H
_SD

_D
I

H
_B

TN
0

H
_B

TN
1

H
_B

TN
2

H
_B

TN
3

H
_B

TN
4

H
_B

TN
5

H
_B

TN
6

H
_B

TN
7

H
_LED

5
H

_LED
6

H
_LED

7
H

_LED
8

H
_LED

9
H

_LED
10

H
_LED

11
H

_LED
12

H
_LED

13
H

_LED
14

H
_LED

15

U
A

R
T0.TX

U
A

R
T0.R

X
U

A
R

T0.C
TR

L_TX
U

A
R

T0.C
TR

L_R
X

H
_U

SB
_D

M
H

_U
SB

_D
P

H
_U

SB
_ID

FPG
A

.A
D

D
R

0
FPG

A
.A

D
D

R
1

FPG
A

.A
D

D
R

2
FPG

A
.A

D
D

R
3

FPG
A

.A
D

D
R

4
FPG

A
.A

D
D

R
5

FPG
A

.A
D

D
R

6
FPG

A
.A

D
D

R
7

FPG
A

.A
D

D
R

8
FPG

A
.A

D
D

R
9

FPG
A

.A
D

D
R

10
FPG

A
.A

D
D

R
11

FPG
A

.A
D

D
R

12
FPG

A
.A

D
D

R
13

FPG
A

.A
D

D
R

14
FPG

A
.A

D
D

R
15

FPG
A

.A
D

D
R

16
FPG

A
.A

D
D

R
17

FPG
A

.A
D

D
R

18
FPG

A
.LB

U
B

FPG
A

.B
U

S0
FPG

A
.B

U
S1

FPG
A

.B
U

S2
FPG

A
.B

U
S3

FPG
A

.B
U

S4
FPG

A
.B

U
S5

FPG
A

.B
U

S6
FPG

A
.B

U
S7

FPG
A

.B
U

S8
FPG

A
.B

U
S9

FPG
A

.B
U

S10
FPG

A
.B

U
S11

FPG
A

.B
U

S12
FPG

A
.B

U
S13

FPG
A

.B
U

S14
FPG

A
.B

U
S15

FPG
A

.W
R

ITE
FPG

A
.EN

A
B

LE
FPG

A
.STA

TE0
FPG

A
.STA

TE1

FPG
A

.PR
O

C
EN

SDU
SB

FPG
A

U
A

R
T0

H
EA

D
ER

B
O

O
T

U
A

R
T1

H
FX

TA
L

G
N

D

407fdd40

SC
U

PIC1601
PIC1602

COC16

PIC1701
PIC1702 COC17PIC1801
PIC1802 COC18

PIC1901
PIC1902

COC19

P
I
S
C
U
0
A
1

P
I
S
C
U
0
A
2

P
I
S
C
U
0
A
3

P
I
S
C
U
0
A
4

P
I
S
C
U
0
A
5

P
I
S
C
U
0
A
6

P
I
S
C
U
0
A
7

P
I
S
C
U
0
A
8

P
I
S
C
U
0
A
9

P
I
S
C
U
0
A
1
0

P
I
S
C
U
0
A
1
1

P
I
S
C
U
0
B
1

P
I
S
C
U
0
B
2

P
I
S
C
U
0
B
3

P
I
S
C
U
0
B
4

P
I
S
C
U
0
B
5

P
I
S
C
U
0
B
6

P
I
S
C
U
0
B
7

P
I
S
C
U
0
B
9

P
I
S
C
U
0
C
1

P
I
S
C
U
0
C
2

P
I
S
C
U
0
C
3

P
I
S
C
U
0
C
4

P
I
S
C
U
0
C
5

P
I
S
C
U
0
C
6

P
I
S
C
U
0
C
8

P
I
S
C
U
0
C
9

P
I
S
C
U
0
C
1
0

P
I
S
C
U
0
C
1
1

P
I
S
C
U
0
D
1

P
I
S
C
U
0
D
2

P
I
S
C
U
0
D
3

P
I
S
C
U
0
D
6

P
I
S
C
U
0
D
8

P
I
S
C
U
0
D
9

P
I
S
C
U
0
D
1
0

P
I
S
C
U
0
D
1
1

P
I
S
C
U
0
E
1

P
I
S
C
U
0
E
2

P
I
S
C
U
0
E
3

P
I
S
C
U
0
E
4

P
I
S
C
U
0
E
8

P
I
S
C
U
0
E
9

P
I
S
C
U
0
E
1
0

P
I
S
C
U
0
E
1
1

P
I
S
C
U
0
F
1

P
I
S
C
U
0
F
2

P
I
S
C
U
0
F
3

P
I
S
C
U
0
F
4

P
I
S
C
U
0
F
1
0

P
I
S
C
U
0
F
1
1

P
I
S
C
U
0
G
1

P
I
S
C
U
0
G
2

P
I
S
C
U
0
G
1
0

P
I
S
C
U
0
G
1
1

P
I
S
C
U
0
H
1

P
I
S
C
U
0
H
2

P
I
S
C
U
0
H
3

P
I
S
C
U
0
H
4

P
I
S
C
U
0
H
5

P
I
S
C
U
0
H
8

P
I
S
C
U
0
H
9

P
I
S
C
U
0
H
1
0

P
I
S
C
U
0
H
1
1

P
I
S
C
U
0
J
1

P
I
S
C
U
0
J
2

P
I
S
C
U
0
J
3

P
I
S
C
U
0
J
4

P
I
S
C
U
0
J
5

P
I
S
C
U
0
J
6

P
I
S
C
U
0
J
7

P
I
S
C
U
0
J
8

P
I
S
C
U
0
J
9

P
I
S
C
U
0
J
1
0

P
I
S
C
U
0
J
1
1

P
I
S
C
U
0
K
1

P
I
S
C
U
0
K
2

P
I
S
C
U
0
K
3

P
I
S
C
U
0
K
5

P
I
S
C
U
0
K
6

P
I
S
C
U
0
K
1
1

P
I
S
C
U
0
L
1

P
I
S
C
U
0
L
2

P
I
S
C
U
0
L
3

P
I
S
C
U
0
L
5

P
I
S
C
U
0
L
6

P
I
S
C
U
0
L
8

P
I
S
C
U
0
L
9

P
I
S
C
U
0
L
1
1

COSCUA

P
I
S
C
U
0
B
8

P
I
S
C
U
0
B
1
0

P
I
S
C
U
0
B
1
1

P
I
S
C
U
0
C
7

P
I
S
C
U
0
D
4

P
I
S
C
U
0
D
5

P
I
S
C
U
0
D
7

P
I
S
C
U
0
F
8

P
I
S
C
U
0
F
9

P
I
S
C
U
0
G
3

P
I
S
C
U
0
G
4

P
I
S
C
U
0
G
8

P
I
S
C
U
0
G
9

P
I
S
C
U
0
H
6

P
I
S
C
U
0
H
7

P
I
S
C
U
0
K
4

P
I
S
C
U
0
K
7

P
I
S
C
U
0
K
8

P
I
S
C
U
0
K
9

P
I
S
C
U
0
K
1
0

P
I
S
C
U
0
L
4

P
I
S
C
U
0
L
7

P
I
S
C
U
0
L
1
0 COSCUB

PISCU0FPGA0H0A01
PISCU0FPGA0H0A02

PISCU0FPGA0H0A03
PISCU0FPGA0H0A04

PISCU0FPGA0H0A05
PISCU0FPGA0H0A06

PISCU0FPGA0H0A07
PISCU0FPGA0H0A08

PISCU0FPGA0H0A09
PISCU0FPGA0H0A010

PISCU0FPGA0H0A011
PISCU0FPGA0H0A012

PISCU0FPGA0H0A013
PISCU0FPGA0H0A014

PISCU0FPGA0H0A015
PISCU0FPGA0H0A016

PISCU0FPGA0H0A017
PISCU0FPGA0H0A018

PISCU0FPGA0H0A019
PISCU0FPGA0H0A020

PISCU0FPGA0H0A021
PISCU0FPGA0H0A022

PISCU0FPGA0H0A023
PISCU0FPGA0H0A024

PISCU0FPGA0H0A025
PISCU0FPGA0H0A026

PISCU0FPGA0H0A027
PISCU0FPGA0H0A028

PISCU0FPGA0H0A029
PISCU0FPGA0H0A030

PISCU0FPGA0H0A031
PISCU0FPGA0H0A032

PISCU0FPGA0H0A033
PISCU0FPGA0H0A034

PISCU0FPGA0H0A035
PISCU0FPGA0H0A036

PISCU0FPGA0H0A037
PISCU0FPGA0H0A038

PISCU0FPGA0H0A039
PISCU0FPGA0H0A040

COSCU0FPGA0H0A

PISCU0FPGA0H0B01
PISCU0FPGA0H0B02

PISCU0FPGA0H0B03
PISCU0FPGA0H0B04

PISCU0FPGA0H0B05
PISCU0FPGA0H0B06

PISCU0FPGA0H0B07
PISCU0FPGA0H0B08

PISCU0FPGA0H0B09
PISCU0FPGA0H0B010

PISCU0FPGA0H0B011
PISCU0FPGA0H0B012

PISCU0FPGA0H0B013
PISCU0FPGA0H0B014

PISCU0FPGA0H0B015
PISCU0FPGA0H0B016

PISCU0FPGA0H0B017
PISCU0FPGA0H0B018

PISCU0FPGA0H0B019
PISCU0FPGA0H0B020

PISCU0FPGA0H0B021
PISCU0FPGA0H0B022

PISCU0FPGA0H0B023
PISCU0FPGA0H0B024

PISCU0FPGA0H0B025
PISCU0FPGA0H0B026

PISCU0FPGA0H0B027
PISCU0FPGA0H0B028

PISCU0FPGA0H0B029
PISCU0FPGA0H0B030

PISCU0FPGA0H0B031
PISCU0FPGA0H0B032

PISCU0FPGA0H0B033
PISCU0FPGA0H0B034

PISCU0FPGA0H0B035
PISCU0FPGA0H0B036

PISCU0FPGA0H0B037
PISCU0FPGA0H0B038

PISCU0FPGA0H0B039
PISCU0FPGA0H0B040

COSCU0FPGA0H0B

PISCU0FPGA0H0C01PISCU0FPGA0H0C02

COSCU0FPGA0H0C

PISCU0LED0H01
PISCU0LED0H02

PISCU0LED0H03
PISCU0LED0H04

PISCU0LED0H05
PISCU0LED0H06

PISCU0LED0H07
PISCU0LED0H08

PISCU0LED0H09
PISCU0LED0H010

PISCU0LED0H011
PISCU0LED0H012

PISCU0LED0H013
PISCU0LED0H014

PISCU0LED0H015
PISCU0LED0H016

PISCU0LED0H017
PISCU0LED0H018

PISCU0LED0H019
PISCU0LED0H020

PISCU0LED0H021
PISCU0LED0H022

PISCU0LED0H023
PISCU0LED0H024

PISCU0LED0H025
PISCU0LED0H026

PISCU0LED0H027
PISCU0LED0H028

PISCU0LED0H029
PISCU0LED0H030

PISCU0LED0H031
PISCU0LED0H032

COSCU0LED0H

PISCU0SD0H01
PISCU0SD0H02

PISCU0SD0H03
PISCU0SD0H04

PISCU0SD0H05
PISCU0SD0H06

PISCU0SD0H07
PISCU0SD0H08

COSCU0SD0H

PISCU0SW0H01
PISCU0SW0H02

PISCU0SW0H03
PISCU0SW0H04

PISCU0SW0H05
PISCU0SW0H06

PISCU0SW0H07
PISCU0SW0H08

PISCU0SW0H09
PISCU0SW0H010

PISCU0SW0H011
PISCU0SW0H012

PISCU0SW0H013
PISCU0SW0H014

PISCU0SW0H015
PISCU0SW0H016

COSCU0SW0H

PISCU0USB0H01
PISCU0USB0H02

PISCU0USB0H03
PISCU0USB0H04

PISCU0USB0H05
PISCU0USB0H06

PISCU0USB0H07
PISCU0USB0H08

COSCU0USB0H

P
I
S
C
U
0
D
5

P
I
S
C
U
0
D
7

P
I
S
C
U
0
F
8

P
I
S
C
U
0
G
4

P
I
S
C
U
0
G
8

P
I
S
C
U
0
H
7

P
I
S
C
U
0
K
8

P
I
S
C
U
0
K
9

P
I
S
C
U
0
L
4

P
I
S
C
U
0
L
1
0

PIC1602

PIC1702

PIC1802

PIC1902

P
I
S
C
U
0
C
7

P
I
S
C
U
0
D
4

P
I
S
C
U
0
F
9

P
I
S
C
U
0
G
3

P
I
S
C
U
0
G
9

P
I
S
C
U
0
H
6

P
I
S
C
U
0
K
4

P
I
S
C
U
0
K
7

P
I
S
C
U
0
K
1
0

P
I
S
C
U
0
L
7

PISCU0USB0H08

P
I
S
C
U
0
E
4

PISCU0SW0H01
NLH0BTN0

P
I
S
C
U
0
F
1

PISCU0SW0H03
NLH0BTN1

P
I
S
C
U
0
F
2

PISCU0SW0H05
NLH0BTN2

P
I
S
C
U
0
F
3

PISCU0SW0H07
NLH0BTN3

P
I
S
C
U
0
F
4

PISCU0SW0H09
NLH0BTN4

P
I
S
C
U
0
G
1

PISCU0SW0H011
NLH0BTN5

P
I
S
C
U
0
G
2

PISCU0SW0H013
NLH0BTN6

P
I
S
C
U
0
K
1

PISCU0SW0H015
NLH0BTN7

P
I
S
C
U
0
H
1

PISCU0FPGA0H0A01
NLH0FPGA0ADDR0

P
I
S
C
U
0
J
1

PISCU0FPGA0H0A03
NLH0FPGA0ADDR1

P
I
S
C
U
0
H
2

PISCU0FPGA0H0A05
NLH0FPGA0ADDR2

P
I
S
C
U
0
J
2

PISCU0FPGA0H0A07
NLH0FPGA0ADDR3

P
I
S
C
U
0
K
2

PISCU0FPGA0H0A09
NLH0FPGA0ADDR4

P
I
S
C
U
0
L
2

PISCU0FPGA0H0A011
NLH0FPGA0ADDR5

P
I
S
C
U
0
G
1
0

PISCU0FPGA0H0A013
NLH0FPGA0ADDR6

P
I
S
C
U
0
G
1
1

PISCU0FPGA0H0A015
NLH0FPGA0ADDR7

P
I
S
C
U
0
D
1
0

PISCU0FPGA0H0A017
NLH0FPGA0ADDR8

P
I
S
C
U
0
D
1
1

PISCU0FPGA0H0A019
NLH0FPGA0ADDR9

P
I
S
C
U
0
C
1
0

PISCU0FPGA0H0A021
NLH0FPGA0ADDR10

P
I
S
C
U
0
C
1
1

PISCU0FPGA0H0A023
NLH0FPGA0ADDR11

P
I
S
C
U
0
E
9

PISCU0FPGA0H0A025
NLH0FPGA0ADDR12

P
I
S
C
U
0
E
1
0

PISCU0FPGA0H0A027
NLH0FPGA0ADDR13

P
I
S
C
U
0
F
1
0

PISCU0FPGA0H0A029
NLH0FPGA0ADDR14

P
I
S
C
U
0
E
1
1

PISCU0FPGA0H0A031
NLH0FPGA0ADDR15

P
I
S
C
U
0
A
9

PISCU0FPGA0H0A033
NLH0FPGA0ADDR16

P
I
S
C
U
0
B
9

PISCU0FPGA0H0A035
NLH0FPGA0ADDR17

P
I
S
C
U
0
C
9

PISCU0FPGA0H0A037
NLH0FPGA0ADDR18

P
I
S
C
U
0
C
2

PISCU0FPGA0H0B01
NLH0FPGA0BUS0

P
I
S
C
U
0
C
1

PISCU0FPGA0H0B03
NLH0FPGA0BUS1

P
I
S
C
U
0
D
2

PISCU0FPGA0H0B05
NLH0FPGA0BUS2

P
I
S
C
U
0
D
1

PISCU0FPGA0H0B07
NLH0FPGA0BUS3

P
I
S
C
U
0
E
3

PISCU0FPGA0H0B09
NLH0FPGA0BUS4

P
I
S
C
U
0
E
2

PISCU0FPGA0H0B011
NLH0FPGA0BUS5

P
I
S
C
U
0
E
1

PISCU0FPGA0H0B013
NLH0FPGA0BUS6

P
I
S
C
U
0
H
4

PISCU0FPGA0H0B015
NLH0FPGA0BUS7

P
I
S
C
U
0
H
5

PISCU0FPGA0H0B017
NLH0FPGA0BUS8

P
I
S
C
U
0
J
5

PISCU0FPGA0H0B019
NLH0FPGA0BUS9

P
I
S
C
U
0
J
6

PISCU0FPGA0H0B021
NLH0FPGA0BUS10

P
I
S
C
U
0
K
5

PISCU0FPGA0H0B023
NLH0FPGA0BUS11

P
I
S
C
U
0
J
4

PISCU0FPGA0H0B025
NLH0FPGA0BUS12

P
I
S
C
U
0
K
3

PISCU0FPGA0H0B027
NLH0FPGA0BUS13

P
I
S
C
U
0
L
3

PISCU0FPGA0H0B029
NLH0FPGA0BUS14

P
I
S
C
U
0
B
1

PISCU0FPGA0H0B031
NLH0FPGA0BUS15

P
I
S
C
U
0
A
4

PISCU0FPGA0H0B035
NLH0FPGA0ENABLE

P
I
S
C
U
0
D
9

PISCU0FPGA0H0A039
NLH0FPGA0LBUB

P
I
S
C
U
0
J
3

PISCU0FPGA0H0C01
NLH0FPGA0PROCEN

P
I
S
C
U
0
C
4

PISCU0FPGA0H0B037
NLH0FPGA0STATE00

P
I
S
C
U
0
H
3

PISCU0FPGA0H0B039
NLH0FPGA0STATE01

P
I
S
C
U
0
B
4

PISCU0FPGA0H0B033
NLH0FPGA0WRITE

P
I
S
C
U
0
L
1

PISCU0LED0H01
NLH0LED0

P
I
S
C
U
0
L
5

PISCU0LED0H03
NLH0LED1

P
I
S
C
U
0
L
6

PISCU0LED0H05
NLH0LED2

P
I
S
C
U
0
D
3

PISCU0LED0H07
NLH0LED3

P
I
S
C
U
0
L
1
1

PISCU0LED0H09
NLH0LED4

P
I
S
C
U
0
J
9

PISCU0LED0H011
NLH0LED5

P
I
S
C
U
0
J
1
0

PISCU0LED0H013
NLH0LED6

P
I
S
C
U
0
J
1
1

PISCU0LED0H015
NLH0LED7

P
I
S
C
U
0
H
9

PISCU0LED0H017
NLH0LED8

P
I
S
C
U
0
H
1
0

PISCU0LED0H019
NLH0LED9

P
I
S
C
U
0
H
1
1

PISCU0LED0H021
NLH0LED10

P
I
S
C
U
0
H
8

PISCU0LED0H023
NLH0LED11

P
I
S
C
U
0
D
6

PISCU0LED0H025
NLH0LED12

P
I
S
C
U
0
A
5

PISCU0LED0H027
NLH0LED13

P
I
S
C
U
0
B
5

PISCU0LED0H029
NLH0LED14

P
I
S
C
U
0
C
5

PISCU0LED0H031
NLH0LED15

P
I
S
C
U
0
B
2

PISCU0SD0H03
NLH0SD0CLK

P
I
S
C
U
0
A
3

PISCU0SD0H01
NLH0SD0CS

P
I
S
C
U
0
A
1

PISCU0SD0H07
NLH0SD0DI

P
I
S
C
U
0
A
2

PISCU0SD0H05
NLH0SD0DO

P
I
S
C
U
0
A
1
0

PISCU0USB0H03
NLH0USB0DM

P
I
S
C
U
0
A
1
1

PISCU0USB0H05
NLH0USB0DP

P
I
S
C
U
0
A
8

PISCU0USB0H07
NLH0USB0ID

P
I
S
C
U
0
A
7

PISCU0USB0H01
NLH0USB0VBUS0ENABLE

NLUSB

NLUSB0ID

P
O
U
S
B

PISCU0USB0H06

NLUSB

NLUSB0DP

P
O
U
S
B

PISCU0USB0H04

NLUSB

NLUSB0DM

P
O
U
S
B

PISCU0USB0H02

NLUSB

NLUSB0VBUS0ENABLE

P
O
U
S
B

P
I
S
C
U
0
C
6

NLUART0

NLUART00CTRL0RX

P
O
U
A
R
T
0

P
I
S
C
U
0
B
6

NLUART0

NLUART00CTRL0TX

P
O
U
A
R
T
0

P
I
S
C
U
0
A
6

NLUART0

NLUART00RX

P
O
U
A
R
T
0

P
I
S
C
U
0
B
7

NLUART0

NLUART00TX

P
O
U
A
R
T
0

PISCU0SD0H08

NLSD

NLSD0DI

P
O
S
D

PISCU0SD0H06

NLSD

NLSD0DO

P
O
S
D

PISCU0SD0H04

NLSD

NLSD0CLK

P
O
S
D

PISCU0SD0H02

NLSD

NLSD0CS

P
O
S
D

PISCU0FPGA0H0C02

NLFPGA

NLFPGA0PROCEN

P
O
F
P
G
A

PISCU0FPGA0H0A040

NLFPGA

NLFPGA0LBUB

P
O
F
P
G
A

PISCU0FPGA0H0B036

NLFPGA

NLFPGA0ENABLE

P
O
F
P
G
A

PISCU0FPGA0H0B034

NLFPGA

NLFPGA0WRITE

P
O
F
P
G
A

P
I
S
C
U
0
J
8

NLUART1

NLUART10RX

P
O
U
A
R
T
1

P
I
S
C
U
0
J
7

NLUART1

NLUART10TX

P
O
U
A
R
T
1

P
I
S
C
U
0
L
9

NLHFXTAL

NLHFXTAL0N

P
O
H
F
X
T
A
L

P
I
S
C
U
0
L
8

NLHFXTAL

NLHFXTAL0P

P
O
H
F
X
T
A
L

P
I
S
C
U
0
C
8

NLHEADER

NLHEADER0DBG0SWO

P
O
H
E
A
D
E
R

P
I
S
C
U
0
D
8

NLHEADER

NLHEADER0DBG0SWDIO

P
O
H
E
A
D
E
R

P
I
S
C
U
0
E
8

NLHEADER

N
L
H
E
A
D
E
R
0
D
B
G
0
S
W
C
L
K

P
O
H
E
A
D
E
R

P
I
S
C
U
0
K
1
1

NLHEADER

NLHEADER0USB0DM0PULLUP

P
O
H
E
A
D
E
R

P
I
S
C
U
0
B
3

NLBOOT

NLBOOT0RX

P
O
B
O
O
T

P
I
S
C
U
0
C
3

NLBOOT

NLBOOT0TX

P
O
B
O
O
T

PIC1601
P
I
S
C
U
0
F
1
1

PIC1701P
I
S
C
U
0
B
1
0

PIC1801PI
S
C
U
0
B
8

PIC1901
P
I
S
C
U
0
B
1
1

P
I
S
C
U
0
K
6

PISCU0FPGA0H0A02

NLFPGA

NLFPGA0ADDR0

P
O
F
P
G
A

PISCU0FPGA0H0A04

NLFPGA

NLFPGA0ADDR1

P
O
F
P
G
A

PISCU0FPGA0H0A06

NLFPGA

NLFPGA0ADDR2

P
O
F
P
G
A

PISCU0FPGA0H0A08

NLFPGA

NLFPGA0ADDR3

P
O
F
P
G
A

PISCU0FPGA0H0A010

NLFPGA

NLFPGA0ADDR4

P
O
F
P
G
A

PISCU0FPGA0H0A012

NLFPGA

NLFPGA0ADDR5

P
O
F
P
G
A

PISCU0FPGA0H0A014

NLFPGA

NLFPGA0ADDR6

P
O
F
P
G
A

PISCU0FPGA0H0A016

NLFPGA

NLFPGA0ADDR7

P
O
F
P
G
A

PISCU0FPGA0H0A018

NLFPGA

NLFPGA0ADDR8

P
O
F
P
G
A

PISCU0FPGA0H0A020

NLFPGA

NLFPGA0ADDR9

P
O
F
P
G
A

PISCU0FPGA0H0A022

NLFPGA

NLFPGA0ADDR10

P
O
F
P
G
A

PISCU0FPGA0H0A024

NLFPGA

NLFPGA0ADDR11

P
O
F
P
G
A

PISCU0FPGA0H0A026

NLFPGA

NLFPGA0ADDR12

P
O
F
P
G
A

PISCU0FPGA0H0A028

NLFPGA

NLFPGA0ADDR13

P
O
F
P
G
A

PISCU0FPGA0H0A030

NLFPGA

NLFPGA0ADDR14

P
O
F
P
G
A

PISCU0FPGA0H0A032

NLFPGA

NLFPGA0ADDR15

P
O
F
P
G
A

PISCU0FPGA0H0A034

NLFPGA

NLFPGA0ADDR16

P
O
F
P
G
A

PISCU0FPGA0H0A036

NLFPGA

NLFPGA0ADDR17

P
O
F
P
G
A

PISCU0FPGA0H0A038

NLFPGA

NLFPGA0ADDR18

P
O
F
P
G
A

PISCU0FPGA0H0B02
NLFPGA

NLFPGA0BUS0

P
O
F
P
G
A

PISCU0FPGA0H0B04
NLFPGA

NLFPGA0BUS1
P
O
F
P
G
A

PISCU0FPGA0H0B06

NLFPGA
NLFPGA0BUS2

P
O
F
P
G
A

PISCU0FPGA0H0B08

NLFPGA

NLFPGA0BUS3

P
O
F
P
G
A

PISCU0FPGA0H0B010

NLFPGA

NLFPGA0BUS4

P
O
F
P
G
A

PISCU0FPGA0H0B012

NLFPGA

NLFPGA0BUS5

P
O
F
P
G
A

PISCU0FPGA0H0B014

NLFPGA

NLFPGA0BUS6

P
O
F
P
G
A

PISCU0FPGA0H0B016

NLFPGA

NLFPGA0BUS7

P
O
F
P
G
A

PISCU0FPGA0H0B018

NLFPGA

NLFPGA0BUS8

P
O
F
P
G
A

PISCU0FPGA0H0B020

NLFPGA

NLFPGA0BUS9

P
O
F
P
G
A

PISCU0FPGA0H0B022

NLFPGA

NLFPGA0BUS10

P
O
F
P
G
A

PISCU0FPGA0H0B024

NLFPGA

NLFPGA0BUS11

P
O
F
P
G
A

PISCU0FPGA0H0B026

NLFPGA

NLFPGA0BUS12

P
O
F
P
G
A

PISCU0FPGA0H0B028

NLFPGA

NLFPGA0BUS13

P
O
F
P
G
A

PISCU0FPGA0H0B030

NLFPGA

NLFPGA0BUS14

P
O
F
P
G
A

PISCU0FPGA0H0B032

NLFPGA

NLFPGA0BUS15

P
O
F
P
G
A

PISCU0FPGA0H0B038

NLFPGA

NLFPGA0STATE0

P
O
F
P
G
A

PISCU0FPGA0H0B040

NLFPGA

NLFPGA0STATE1

P
O
F
P
G
A

PISCU0LED0H02

NLLED0000150

NLLED0

POLED0000150

PISCU0LED0H04

NLLED0000150

NLLED1

POLED0000150

PISCU0LED0H06

NLLED0000150

NLLED2

POLED0000150

PISCU0LED0H08

NLLED0000150

NLLED3

POLED0000150

PISCU0LED0H010

NLLED0000150

NLLED4

POLED0000150

PISCU0LED0H012

NLLED0000150

NLLED5

POLED0000150

PISCU0LED0H014

NLLED0000150

NLLED6

POLED0000150

PISCU0LED0H016

NLLED0000150

NLLED7

POLED0000150

PISCU0LED0H018

NLLED0000150

NLLED8

POLED0000150

PISCU0LED0H020

NLLED0000150

NLLED9

POLED0000150

PISCU0LED0H022

NLLED0000150

NLLED10

POLED0000150

PISCU0LED0H024

NLLED0000150

NLLED11

POLED0000150

PISCU0LED0H026

NLLED0000150

NLLED12

POLED0000150

PISCU0LED0H028

NLLED0000150

NLLED13

POLED0000150

PISCU0LED0H030

NLLED0000150

NLLED14

POLED0000150

PISCU0LED0H032

NLLED0000150

NLLED15

POLED0000150

PISCU0SW0H02

NLSW000070

NLSW0

P
O
S
W
0
0
0
0
7
0

PISCU0SW0H04

NLSW000070

NLSW1

P
O
S
W
0
0
0
0
7
0

PISCU0SW0H06

NLSW000070

NLSW2

P
O
S
W
0
0
0
0
7
0

PISCU0SW0H08

NLSW000070

NLSW3

P
O
S
W
0
0
0
0
7
0

PISCU0SW0H010

NLSW000070

NLSW4

P
O
S
W
0
0
0
0
7
0

PISCU0SW0H012

NLSW000070

NLSW5

P
O
S
W
0
0
0
0
7
0

PISCU0SW0H014

NLSW000070

NLSW6

P
O
S
W
0
0
0
0
7
0

PISCU0SW0H016

NLSW000070

NLSW7

P
O
S
W
0
0
0
0
7
0

P
O
B
O
O
T

P
O
B
O
O
T
0
R
X

P
O
B
O
O
T
0
T
X

P
O
F
P
G
A

POFPGA0ADDR0
POFPGA0ADDR1
POFPGA0ADDR2
POFPGA0ADDR3
POFPGA0ADDR4
POFPGA0ADDR5
POFPGA0ADDR6
POFPGA0ADDR7
POFPGA0ADDR8
POFPGA0ADDR9
POFPGA0ADDR10
POFPGA0ADDR11
POFPGA0ADDR12
POFPGA0ADDR13
POFPGA0ADDR14
POFPGA0ADDR15
POFPGA0ADDR16
POFPGA0ADDR17
POFPGA0ADDR18
POFPGA0ADDR0000180
P
O
F
P
G
A
0
B
U
S
0

P
O
F
P
G
A
0
B
U
S
1

P
O
F
P
G
A
0
B
U
S
2

P
O
F
P
G
A
0
B
U
S
3

P
O
F
P
G
A
0
B
U
S
4

P
O
F
P
G
A
0
B
U
S
5

P
O
F
P
G
A
0
B
U
S
6

P
O
F
P
G
A
0
B
U
S
7

P
O
F
P
G
A
0
B
U
S
8

P
O
F
P
G
A
0
B
U
S
9

POFPGA0BUS10
POFPGA0BUS11
POFPGA0BUS12
POFPGA0BUS13
POFPGA0BUS14
POFPGA0BUS15
POFPGA0BUS0000150
POFPGA0ENABLE
P
O
F
P
G
A
0
L
B
U
B

POFPGA0PROCEN
POFPGA0STATE0
POFPGA0STATE1
POFPGA0STATE000010
POFPGA0WRITE

P
O
H
E
A
D
E
R

POHEADER0DBG0SWCLK
POHEADER0DBG0SWDIO
POHEADER0DBG0SWO
POHEADER0USB0DM0PULLUP

P
O
H
F
X
T
A
L

P
O
H
F
X
T
A
L
0
N

P
O
H
F
X
T
A
L
0
P

P
O
L
E
D
0

P
O
L
E
D
1

P
O
L
E
D
2

P
O
L
E
D
3

P
O
L
E
D
4

P
O
L
E
D
5

P
O
L
E
D
6

P
O
L
E
D
7

P
O
L
E
D
8

P
O
L
E
D
9

P
O
L
E
D
1
0

P
O
L
E
D
1
1

P
O
L
E
D
1
2

P
O
L
E
D
1
3

P
O
L
E
D
1
4

P
O
L
E
D
1
5

POLED0000150

P
O
S
D

P
O
S
D
0
C
L
K

P
O
S
D
0
C
S

P
O
S
D
0
D
I

P
O
S
D
0
D
O

P
O
S
W
0

P
O
S
W
1

P
O
S
W
2

P
O
S
W
3

P
O
S
W
4

P
O
S
W
5

P
O
S
W
6

P
O
S
W
7

P
O
S
W
0
0
0
0
7
0

P
O
U
A
R
T
0

POUART00CTRL0RX
POUART00CTRL0TX
P
O
U
A
R
T
0
0
R
X

P
O
U
A
R
T
0
0
T
X

P
O
U
A
R
T
1

P
O
U
A
R
T
1
0
R
X

P
O
U
A
R
T
1
0
T
X

P
O
U
S
B

P
O
U
S
B
0
D
M

P
O
U
S
B
0
D
P

P
O
U
S
B
0
I
D

POUSB0VBUS0ENABLE

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

A
4

D
ate:

17.11.2013
Sheet of

File:
C

:\U
sers\..\crystal.schdoc

D
raw

n B
y:

G
N

D

G
N

D

PN H
FX

TA
L

H
FX

TA
L

0.1uF

C
14

C
ap 1210 SM

D

0.1uF

C
15

C
ap 1210 SM

D

Pin 11 Pin 2 2

X
TA

L
C

rystal A
B

S10-32.768kH
z

407fdd40

C
rystal

PIC1401
PIC1402 COC14

PIC1501
PIC1502

COC15
PIXTAL01 PIXTAL02

COXTAL

PIC1402

PIC1501

PIC1401

PIXTAL02

P
O
H
F
X
T
A
L

PIC1502

PIXTAL01

P
O
H
F
X
T
A
L

P
O
H
F
X
T
A
L

P
O
H
F
X
T
A
L
0
N

P
O
H
F
X
T
A
L
0
P

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

A
4

D
ate:

17.11.2013
Sheet of

File:
C

:\U
sers\..\m

icrocontroller_reset_button.schdoc
D

raw
n B

y:

R
ESETn

12
34

R
ESET_SW

FSM
2JSM

A
3.3V

407fdd40

R
eset sw

itch

PIRESET0SW01PIRESET0SW02 PIRESET0SW03PIRESET0SW04
CORESET0SW

PIRESET0SW03PIRESET0SW04

PIRESET0SW01PIRESET0SW02
P
O
R
E
S
E
T
n

P
O
R
E
S
E
T
N

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

A
4

D
ate:

17.11.2013
Sheet of

File:
C

:\U
sers\..\sdsheet.SchD

oc
D

raw
n B

y:

C
S

C
LK

D
O

D
I

SD

SD
.C

LK

SD

SD
.C

S

SD
.D

O

SD
.D

I

C
S

C
LK

D
O

D
I

V
C

C
V

C
C

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

SD
1

sd

3.3v

G
N

D

SD

50kR

R
32

R
es 1206 for SD

50kR

R
35

R
es 1206 for SD

50kR

R
37

R
es 1206 for SD

50kR

R
38

R
es 1206 for SD

50kR

R
36

R
es 1206 for SD

50kR

R
34

R
es 1206 for SD

50kR

R
33

R
es 1206 for SD

100kR

R
39

R
es 1206 for SD

407fdd40

SD

PIR3201
PIR3202

COR32

PIR3301
PIR3302

COR33

PIR3401
PIR3402

COR34

PIR3501
PIR3502

COR35

PIR3601
PIR3602

COR36

PIR3701
PIR3702

COR37
PIR3801

PIR3802
COR38

PIR3901
PIR3902

COR39

P
I
S
D
1
0
1

P
I
S
D
1
0
2

P
I
S
D
1
0
3

P
I
S
D
1
0
4

P
I
S
D
1
0
5

P
I
S
D
1
0
6

P
I
S
D
1
0
7

P
I
S
D
1
0
8

P
I
S
D
1
0
1
0

P
I
S
D
1
0
1
1

P
I
S
D
1
0
1
2

COSD1

P
I
S
D
1
0
4

P
I
S
D
1
0
1
1

PIR3302

PIR3402

PIR3602

PIR3802

PIR3902

PIR3701

NLSD

NLSD0DI

P
O
S
D

PIR3501

NLSD

NLSD0DO

P
O
S
D

P
I
S
D
1
0
5

NLSD

NLSD0CLK

P
O
S
D

PIR3201

NLSD

NLSD0CS

P
O
S
D

PIR3202
P
I
S
D
1
0
1

PIR3301
P
I
S
D
1
0
3

PIR3401
P
I
S
D
1
0
6

PIR3502
P
I
S
D
1
0
7

PIR3601
P
I
S
D
1
0
8

PIR3702
P
I
S
D
1
0
2

PIR3801
P
I
S
D
1
0
1
0

PIR3901
P
I
S
D
1
0
1
2

P
O
S
D

P
O
S
D
0
C
L
K

P
O
S
D
0
C
S

P
O
S
D
0
D
I

P
O
S
D
0
D
O

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

A
4

D
ate:

17.11.2013
Sheet of

File:
C

:\U
sers\..\serial_port.SchD

oc
D

raw
n B

y:

1 2 3 4 56 7 8 9

11 10

SP_C
O

N

D
 C

onnector 9

Send data
Send-data control signal
R

eceive data
R

eceive-data control signal

G
N

D

Pins 4,5,1,6 w
ill supposedly be disabled, revise current solution

C
1+

1

V
+

2

C
1-

3

C
2+

4

C
2-

5

V
-

6

D
O

U
T2

7

R
IN

2
8

R
O

U
T2

9
D

IN
2

10

D
IN

1
11

R
O

U
T1

12
R

IN
1

13
D

O
U

T1
14

G
N

D
15

V
C

C
16

SPD

M
A

X
3232C

D
B

E4
system

 ground

transm
it data

receive data
request to send

clear to send

A
ll signals below

 are w
hat they appear to be on the other side of connection

data term
inal ready

ring indicator

data set ready
(data) carrier detect

U
A

R
T0.TX

U
A

R
T0.R

X
U

A
R

T0.C
TR

L_TX

U
A

R
T0.C

TR
L_R

X

TXR
X

C
TR

L_TX
C

TR
L_R

X

U
A

R
T0

U
A

R
T0

G
N

D

3.3V

G
N

D

12

- +E1100nF

12

- +E2100nF

12

- +E4100nF

1 2

-+

E3100nF

12

- +E5100nF

U
A

R
T0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

SP_H

H
eader 8X

2

407fdd40

Serial port

PIE101PIE102

COE1
PIE201PIE202

COE2

PIE301 PIE302
COE3

PIE401PIE402

COE4

PIE501PIE502

COE5

PISP0CON01

PISP0CON02

PISP0CON03

PISP0CON04

PISP0CON05

PISP0CON06

PISP0CON07

PISP0CON08

PISP0CON09

PISP0CON010

PISP0CON011

COSP0CON

P
I
S
P
0
H
0
1

PISP0H02

P
I
S
P
0
H
0
3

PISP0H04

P
I
S
P
0
H
0
5

PISP0H06

P
I
S
P
0
H
0
7

PISP0H08

P
I
S
P
0
H
0
9

PISP0H010

PISP0H011
PISP0H012

PISP0H013
PISP0H014

PISP0H015
PISP0H016

COSP0H

P
I
S
P
D
0
1

PISPD02

P
I
S
P
D
0
3

P
I
S
P
D
0
4

P
I
S
P
D
0
5

PISPD06

P
I
S
P
D
0
7

P
I
S
P
D
0
8

P
I
S
P
D
0
9

P
I
S
P
D
0
1
0

P
I
S
P
D
0
1
1

P
I
S
P
D
0
1
2

PISPD013

PISPD014

PISPD015
PISPD016 COSPD

PIE402
PIE301

PIE502

PISP0CON05

PISP0CON010

PISP0CON011

P
I
S
P
0
H
0
1

P
I
S
P
0
H
0
3

PISP0H013

PISP0H015

PISPD015

P
I
S
P
0
H
0
5

NLUART0

NLUART00CTRL0RX

P
O
U
A
R
T
0

P
I
S
P
0
H
0
9

NLUART0

NLUART00CTRL0TX

P
O
U
A
R
T
0

P
I
S
P
0
H
0
7

NLUART0

NLUART00RX

P
O
U
A
R
T
0

PISP0H011

NLUART0

NLUART00TX

P
O
U
A
R
T
0

PIE101
P
I
S
P
D
0
1

PIE102
P
I
S
P
D
0
3

PIE201
P
I
S
P
D
0
4

PIE202
P
I
S
P
D
0
5

PIE302
PISPD06

PIE401

PISPD02PIE501

PISPD016

PISP0CON01
PISP0H016

PISP0CON02

PISPD014

PISP0CON03

PISPD013

PISP0CON04
PISP0H04

PISP0CON06
PISP0H014

PISP0CON07

P
I
S
P
D
0
7

PISP0CON08

P
I
S
P
D
0
8

PISP0CON09
PISP0H02

PISP0H06

P
I
S
P
D
0
9

PISP0H08

P
I
S
P
D
0
1
2

PISP0H010

P
I
S
P
D
0
1
0

PISP0H012

P
I
S
P
D
0
1
1

P
O
U
A
R
T
0

POUART00CTRL0RX
POUART00CTRL0TX
P
O
U
A
R
T
0
0
R
X

P
O
U
A
R
T
0
0
T
X

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

A
4

D
ate:

17.11.2013
Sheet of

File:
C

:\U
sers\..\U

SB
device.SchD

oc
D

raw
n B

y:

V
B

U
S_EN

A
B

LE
D

M

D
P

ID

U
SB

U
SB

V
B

U
S

1
D

-
2

D
+

3
ID

4
G

N
D

5

SH

J1

1
2

4
3

L1160 O
hm

1

2

34

5

U
SB

_D
#N

A
M

E?

1
2

L2300 O
hm

G
N

D

G
N

D

U
SB

.D
M

U
SB

.D
P

U
SB

.V
B

U
S_EN

A
B

LE

U
SB

407fdd40

U
SB

P
I
J
1
0
1

P
I
J
1
0
2

P
I
J
1
0
3

PIJ104

PIJ105

P
I
J
1
0
S
H

COJ1

PIL101
PIL102

PIL103
PIL104 COL1

PIL201
PIL202 COL2

PIUSB0D01

PIUSB0D02
PIUSB0D03PIUSB0D04

PIUSB0D05

COUSB0D

PIJ105

PIUSB0D02
NLUSB

P
O
U
S
B

PIL101

NLUSB

NLUSB0DP

P
O
U
S
B

PIL104

NLUSB
NLUSB0DM

P
O
U
S
B

PIL202

NLUSB

NLUSB0VBUS0ENABLE

P
O
U
S
B

P
I
J
1
0
1

PIL201

PIUSB0D05
P
I
J
1
0
2

PIL103

PIUSB0D04
P
I
J
1
0
3

PIL102

PIUSB0D03

PIJ104
P
I
J
1
0
S
H

PIUSB0D01

P
O
U
S
B

P
O
U
S
B
0
D
M

P
O
U
S
B
0
D
P

P
O
U
S
B
0
I
D

POUSB0VBUS0ENABLE

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

A
4

D
ate:

17.11.2013
Sheet of

File:
C

:\U
sers\..\buttons.SchD

oc
D

raw
n B

y:

G
N

D

SW
[0..7]

SW
[0..7]

SW
0

SW
1

SW
2

SW
3

SW
4

SW
5

SW
6

SW
7

12
34

SW
1

FSM
2JSM

A

12
34

SW
2

FSM
2JSM

A

12
34

SW
3

FSM
2JSM

A

12
34

SW
4

FSM
2JSM

A
12
34

SW
5

FSM
2JSM

A

12
34

SW
6

FSM
2JSM

A

12
34

SW
7

FSM
2JSM

A

12
34

SW
8

FSM
2JSM

A

407fdd40

B
uttons

PISW101PISW102 PISW103PISW104
COSW1

PISW201PISW202 PISW203PISW204
COSW2

PISW301PISW302 PISW303PISW304
COSW3

PISW401PISW402 PISW403PISW404
COSW4

PISW501PISW502 PISW503PISW504
COSW5

PISW601PISW602 PISW603PISW604
COSW6

PISW701PISW702 PISW703PISW704
COSW7

PISW801PISW802 PISW803PISW804
COSW8

PISW103PISW104PISW203PISW204PISW303PISW304PISW403PISW404PISW503PISW504PISW603PISW604PISW703PISW704PISW803PISW804

PISW101PISW102
NLSW000070

NLSW0
P
O
S
W
0
0
0
0
7
0

PISW201PISW202

NLSW000070

NLSW1

P
O
S
W
0
0
0
0
7
0

PISW301PISW302

NLSW000070

NLSW2

P
O
S
W
0
0
0
0
7
0

PISW401PISW402

NLSW000070

NLSW3

P
O
S
W
0
0
0
0
7
0

PISW501PISW502

NLSW000070

NLSW4

P
O
S
W
0
0
0
0
7
0

PISW601PISW602

NLSW000070

NLSW5

P
O
S
W
0
0
0
0
7
0

PISW701PISW702

NLSW000070

NLSW6

P
O
S
W
0
0
0
0
7
0

PISW801PISW802

NLSW000070

NLSW7

P
O
S
W
0
0
0
0
7
0

P
O
S
W
0

P
O
S
W
1

P
O
S
W
2

P
O
S
W
3

P
O
S
W
4

P
O
S
W
5

P
O
S
W
6

P
O
S
W
7

P
O
S
W
0
0
0
0
7
0

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

A
4

D
ate:

17.11.2013
Sheet of

File:
C

:\U
sers\..\leds.SchD

oc
D

raw
n B

y:

G
N

D

LED
5

H
SM

G
-C

170
LED

6

H
SM

G
-C

170
LED

7

H
SM

G
-C

170
LED

8

H
SM

G
-C

170
LED

9

H
SM

G
-C

170
LED

10

H
SM

G
-C

170
LED

11

H
SM

G
-C

170
LED

12

H
SM

G
-C

170
LED

13

H
SM

G
-C

170
LED

14

H
SM

G
-C

170
LED

15

H
SM

G
-C

170
LED

16

H
SM

G
-C

170
LED

17

H
SM

G
-C

170
LED

18

H
SM

G
-C

170
LED

19

H
SM

G
-C

170
LED

20

H
SM

G
-C

170

LED
0

LED
1

LED
2

LED
3

LED
4

LED
5

LED
6

LED
7

LED
8

LED
9

LED
10

LED
11

LED
12

LED
13

LED
14

LED
15

LED
[0..15]

LED
[0..15]

56R

R
4

56R

R
6

56R

R
8

56R

R
10

56R

R
12

56R

R
14

56R

R
16

56R

R
18

56R

R
19

56R

R
17

56R

R
15

56R

R
13

56R

R
11

56R

R
9

56R

R
7

56R

R
5

407fdd40

U
ser leds

P
I
L
E
D
5
0
1

P
I
L
E
D
5
0
2

COLED5

PILED601
PILED602

COLED6

P
I
L
E
D
7
0
1

P
I
L
E
D
7
0
2

COLED7

P
I
L
E
D
8
0
1

P
I
L
E
D
8
0
2

COLED8

P
I
L
E
D
9
0
1

P
I
L
E
D
9
0
2

COLED9

PILED1001
PILED1002

COLED10

PILED1101
PILED1102

COLED11

PILED1201
PILED1202

COLED12

PILED1301
PILED1302

COLED13

PILED1401
PILED1402

COLED14

PILED1501
PILED1502

COLED15

PILED1601
PILED1602

COLED16

PILED1701
PILED1702

COLED17

PILED1801
PILED1802

COLED18

PILED1901
PILED1902

COLED19

PILED2001
PILED2002

COLED20

PIR401
PIR402

COR4

PIR501
PIR502

COR5

PIR601
PIR602

COR6

PIR701
PIR702

COR7

PIR801
PIR802

COR8

PIR901
PIR902

COR9

PIR1001
PIR1002

COR10

PIR1101
PIR1102

COR11

PIR1201
PIR1202

COR12

PIR1301
PIR1302

COR13

PIR1401
PIR1402

COR14

PIR1501
PIR1502

COR15

PIR1601
PIR1602

COR16

PIR1701
PIR1702

COR17

PIR1801
PIR1802

COR18

PIR1901
PIR1902

COR19

P
I
L
E
D
5
0
2

PILED602

P
I
L
E
D
7
0
2

P
I
L
E
D
8
0
2

P
I
L
E
D
9
0
2

PILED1002

PILED1102

PILED1202

PILED1302

PILED1402

PILED1502

PILED1602

PILED1702

PILED1802

PILED1902

PILED2002

P
I
L
E
D
5
0
1

PIR402

PILED601
PIR502

P
I
L
E
D
7
0
1

PIR602

P
I
L
E
D
8
0
1

PIR702

P
I
L
E
D
9
0
1

PIR802

PILED1001
PIR902

PILED1101
PIR1002

PILED1201
PIR1102

PILED1301
PIR1202

PILED1401
PIR1302

PILED1501
PIR1402

PILED1601
PIR1502

PILED1701
PIR1602

PILED1801
PIR1702

PILED1901
PIR1802

PILED2001
PIR1902

PIR401
NLLED0000150

NLLED0
POLED0000150

PIR501

NLLED0000150

NLLED1

POLED0000150

PIR601

NLLED0000150

NLLED2

POLED0000150

PIR701

NLLED0000150

NLLED3

POLED0000150

PIR801

NLLED0000150

NLLED4

POLED0000150

PIR901

NLLED0000150

NLLED5

POLED0000150

PIR1001

NLLED0000150

NLLED6

POLED0000150

PIR1101

NLLED0000150

NLLED7

POLED0000150

PIR1201

NLLED0000150

NLLED8

POLED0000150

PIR1301

NLLED0000150

NLLED9

POLED0000150

PIR1401

NLLED0000150

NLLED10

POLED0000150

PIR1501

NLLED0000150

NLLED11

POLED0000150

PIR1601

NLLED0000150

NLLED12

POLED0000150

PIR1701

NLLED0000150

NLLED13

POLED0000150

PIR1801

NLLED0000150

NLLED14

POLED0000150

PIR1901

NLLED0000150

NLLED15

POLED0000150
P
O
L
E
D
0

P
O
L
E
D
1

P
O
L
E
D
2

P
O
L
E
D
3

P
O
L
E
D
4

P
O
L
E
D
5

P
O
L
E
D
6

P
O
L
E
D
7

P
O
L
E
D
8

P
O
L
E
D
9

P
O
L
E
D
1
0

P
O
L
E
D
1
1

P
O
L
E
D
1
2

P
O
L
E
D
1
3

P
O
L
E
D
1
4

P
O
L
E
D
1
5

POLED0000150

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

A
4

D
ate:

17.11.2013
Sheet of

File:
C

:\U
sers\..\m

em
orychip_schem

atic.SchD
ocD

raw
n B

y:

3.3V

G
N

D

W
R

ITE
EN

A
B

LE

A
D

D
R

[0..18]
B

U
S[0..15]

LB
U

B

M
EM

O
R

Y

M
EM

O
R

Y

G
N

D
M

EM
O

R
Y

.W
R

ITE
M

EM
O

R
Y

.EN
A

B
LE

V
cc

11
V

cc
33

V
ss

34

A
0

5
A

1
4

A
2

3
A

3
2

A
4

1
A

5
44

A
6

43
A

7
42

A
8

28
A

9
27

A
10

26
A

11
25

A
12

24
A

13
23

A
14

22
A

15
21

A
16

20
A

17
19

A
18

18

D
Q

0
7

D
Q

1
8

D
Q

2
9

D
Q

3
10

D
Q

4
13

D
Q

5
14

D
Q

6
15

D
Q

7
16

D
Q

8
29

D
Q

9
30

D
Q

10
31

D
Q

11
32

D
Q

12
35

D
Q

13
36

D
Q

14
37

D
Q

15
38

C
E#

6

O
E#

41

W
E#

17

LB
#

39
U

B
#

40

V
ss

12

M
EM

m
em

chip-A
S7C

38098A

M
EM

O
R

Y
.A

D
D

R
0

M
EM

O
R

Y
.A

D
D

R
1

M
EM

O
R

Y
.A

D
D

R
2

M
EM

O
R

Y
.A

D
D

R
3

M
EM

O
R

Y
.A

D
D

R
4

M
EM

O
R

Y
.A

D
D

R
5

M
EM

O
R

Y
.A

D
D

R
6

M
EM

O
R

Y
.A

D
D

R
7

M
EM

O
R

Y
.A

D
D

R
8

M
EM

O
R

Y
.A

D
D

R
9

M
EM

O
R

Y
.A

D
D

R
10

M
EM

O
R

Y
.A

D
D

R
11

M
EM

O
R

Y
.A

D
D

R
12

M
EM

O
R

Y
.A

D
D

R
13

M
EM

O
R

Y
.A

D
D

R
14

M
EM

O
R

Y
.A

D
D

R
15

M
EM

O
R

Y
.A

D
D

R
16

M
EM

O
R

Y
.A

D
D

R
17

M
EM

O
R

Y
.A

D
D

R
18

M
EM

O
R

Y
.B

U
S0

M
EM

O
R

Y
.B

U
S1

M
EM

O
R

Y
.B

U
S2

M
EM

O
R

Y
.B

U
S3

M
EM

O
R

Y
.B

U
S4

M
EM

O
R

Y
.B

U
S5

M
EM

O
R

Y
.B

U
S6

M
EM

O
R

Y
.B

U
S7

M
EM

O
R

Y
.B

U
S8

M
EM

O
R

Y
.B

U
S9

M
EM

O
R

Y
.B

U
S10

M
EM

O
R

Y
.B

U
S11

M
EM

O
R

Y
.B

U
S12

M
EM

O
R

Y
.B

U
S13

M
EM

O
R

Y
.B

U
S14

M
EM

O
R

Y
.B

U
S15

M
EM

O
R

Y

M
EM

O
R

Y
.LB

U
B

M
EM

O
R

Y
.LB

U
B

407fdd40

M
em

orychip

P
I
M
E
M
0
1

P
I
M
E
M
0
2

PIMEM03

PIMEM04

PIMEM05

PIMEM06

P
I
M
E
M
0
7

P
I
M
E
M
0
8

P
I
M
E
M
0
9

P
I
M
E
M
0
1
0

PIMEM011

P
I
M
E
M
0
1
2

P
I
M
E
M
0
1
3

P
I
M
E
M
0
1
4

P
I
M
E
M
0
1
5

P
I
M
E
M
0
1
6

P
I
M
E
M
0
1
7

P
I
M
E
M
0
1
8

P
I
M
E
M
0
1
9

P
I
M
E
M
0
2
0

P
I
M
E
M
0
2
1

P
I
M
E
M
0
2
2

P
I
M
E
M
0
2
3

P
I
M
E
M
0
2
4

P
I
M
E
M
0
2
5

P
I
M
E
M
0
2
6

P
I
M
E
M
0
2
7

P
I
M
E
M
0
2
8

P
I
M
E
M
0
2
9

P
I
M
E
M
0
3
0

P
I
M
E
M
0
3
1

P
I
M
E
M
0
3
2

PIMEM033

PIMEM034

PIMEM035

PIMEM036

PIMEM037

P
I
M
E
M
0
3
8

P
I
M
E
M
0
3
9

P
I
M
E
M
0
4
0

P
I
M
E
M
0
4
1

P
I
M
E
M
0
4
2

P
I
M
E
M
0
4
3

P
I
M
E
M
0
4
4

C
O
M
E
M

PIMEM011

PIMEM033

P
I
M
E
M
0
1
2

PIMEM034

P
I
M
E
M
0
4
1

P
I
M
E
M
0
3
9

P
I
M
E
M
0
4
0

NLMEMORY

NLMEMORY0LBUB

P
O
M
E
M
O
R
Y

PIMEM06

NLMEMORY

NLMEMORY0ENABLE

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
1
7

NLMEMORY

NLMEMORY0WRITE

P
O
M
E
M
O
R
Y

PIMEM05

NLMEMORY

N
L
M
E
M
O
R
Y
0
A
D
D
R
0

P
O
M
E
M
O
R
Y

PIMEM04

NLMEMORY

NLMEMORY0ADDR1

P
O
M
E
M
O
R
Y

PIMEM03

NLMEMORY

NLMEMORY0ADDR2

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
2

NLMEMORY

NLMEMORY0ADDR3

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
1

NLMEMORY

NLMEMORY0ADDR4

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
4
4

NLMEMORY

NLMEMORY0ADDR5

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
4
3

NLMEMORY

NLMEMORY0ADDR6

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
4
2

NLMEMORY

NLMEMORY0ADDR7

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
2
8

NLMEMORY

NLMEMORY0ADDR8

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
2
7

NLMEMORY

NLMEMORY0ADDR9

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
2
6

NLMEMORY

NLMEMORY0ADDR10

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
2
5

NLMEMORY

NLMEMORY0ADDR11

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
2
4

NLMEMORY

NLMEMORY0ADDR12

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
2
3

NLMEMORY

NLMEMORY0ADDR13

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
2
2

NLMEMORY

NLMEMORY0ADDR14

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
2
1

NLMEMORY

NLMEMORY0ADDR15

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
2
0

NLMEMORY

NLMEMORY0ADDR16

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
1
9

NLMEMORY

NLMEMORY0ADDR17

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
1
8

NLMEMORY

NLMEMORY0ADDR18

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
7

NLMEMORY

NLMEMORY0BUS0

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
8

NLMEMORY

NLMEMORY0BUS1

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
9

NLMEMORY

NLMEMORY0BUS2

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
1
0

NLMEMORY

NLMEMORY0BUS3

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
1
3

NLMEMORY

NLMEMORY0BUS4

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
1
4

NLMEMORY

NLMEMORY0BUS5

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
1
5

NLMEMORY

NLMEMORY0BUS6

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
1
6

NLMEMORY

NLMEMORY0BUS7

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
2
9

NLMEMORY

NLMEMORY0BUS8

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
3
0

NLMEMORY

NLMEMORY0BUS9

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
3
1

NLMEMORY

NLMEMORY0BUS10

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
3
2

NLMEMORY

NLMEMORY0BUS11

P
O
M
E
M
O
R
Y

PIMEM035

NLMEMORY

N
L
M
E
M
O
R
Y
0
B
U
S
1
2

P
O
M
E
M
O
R
Y

PIMEM036

NLMEMORY

NLMEMORY0BUS13

P
O
M
E
M
O
R
Y

PIMEM037

NLMEMORY

NLMEMORY0BUS14

P
O
M
E
M
O
R
Y

P
I
M
E
M
0
3
8

NLMEMORY

NLMEMORY0BUS15

P
O
M
E
M
O
R
Y

P
O
M
E
M
O
R
Y

POMEMORY0ADDR0
POMEMORY0ADDR1
POMEMORY0ADDR2
POMEMORY0ADDR3
POMEMORY0ADDR4
POMEMORY0ADDR5
POMEMORY0ADDR6
POMEMORY0ADDR7
POMEMORY0ADDR8
POMEMORY0ADDR9
POMEMORY0ADDR10
POMEMORY0ADDR11
POMEMORY0ADDR12
POMEMORY0ADDR13
POMEMORY0ADDR14
POMEMORY0ADDR15
POMEMORY0ADDR16
POMEMORY0ADDR17
POMEMORY0ADDR18
POMEMORY0ADDR0000180
P
O
M
E
M
O
R
Y
0
B
U
S
0

P
O
M
E
M
O
R
Y
0
B
U
S
1

P
O
M
E
M
O
R
Y
0
B
U
S
2

P
O
M
E
M
O
R
Y
0
B
U
S
3

P
O
M
E
M
O
R
Y
0
B
U
S
4

P
O
M
E
M
O
R
Y
0
B
U
S
5

P
O
M
E
M
O
R
Y
0
B
U
S
6

P
O
M
E
M
O
R
Y
0
B
U
S
7

P
O
M
E
M
O
R
Y
0
B
U
S
8

P
O
M
E
M
O
R
Y
0
B
U
S
9

POMEMORY0BUS10
POMEMORY0BUS11
POMEMORY0BUS12
POMEMORY0BUS13
POMEMORY0BUS14
POMEMORY0BUS15
POMEMORY0BUS0000150
POMEMORY0ENABLE
P
O
M
E
M
O
R
Y
0
L
B
U
B

POMEMORY0WRITE

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

A
4

D
ate:

17.11.2013
Sheet of

File:
C

:\U
sers\..\headers.SchD

oc
D

raw
n B

y:

FPG
A

_H
EA

D
ER

[0..83]

TXR
X

U
A

R
T1

U
A

R
T1

TXR
X

B
O

O
T

B
O

O
T

U
SB

_D
M

_PU
LLU

P
D

B
G

_SW
C

LK

D
B

G
_SW

D
IO

D
B

G
_SW

O

H
EA

D
ER

H
EA

D
ER

FPG
A

_H
EA

D
ER

0
FPG

A
_H

EA
D

ER
1

FPG
A

_H
EA

D
ER

2
FPG

A
_H

EA
D

ER
3

FPG
A

_H
EA

D
ER

4
FPG

A
_H

EA
D

ER
5

FPG
A

_H
EA

D
ER

6
FPG

A
_H

EA
D

ER
7

FPG
A

_H
EA

D
ER

8
FPG

A
_H

EA
D

ER
9

FPG
A

_H
EA

D
ER

10
FPG

A
_H

EA
D

ER
11

FPG
A

_H
EA

D
ER

12
FPG

A
_H

EA
D

ER
13

FPG
A

_H
EA

D
ER

14
FPG

A
_H

EA
D

ER
15

FPG
A

_H
EA

D
ER

16
FPG

A
_H

EA
D

ER
17

FPG
A

_H
EA

D
ER

18
FPG

A
_H

EA
D

ER
19

FPG
A

_H
EA

D
ER

20
FPG

A
_H

EA
D

ER
21

FPG
A

_H
EA

D
ER

22
FPG

A
_H

EA
D

ER
23

FPG
A

_H
EA

D
ER

24
FPG

A
_H

EA
D

ER
25

FPG
A

_H
EA

D
ER

26
FPG

A
_H

EA
D

ER
27

FPG
A

_H
EA

D
ER

28
FPG

A
_H

EA
D

ER
29

FPG
A

_H
EA

D
ER

30
FPG

A
_H

EA
D

ER
31

FPG
A

_H
EA

D
ER

32
FPG

A
_H

EA
D

ER
33

FPG
A

_H
EA

D
ER

34
FPG

A
_H

EA
D

ER
35

FPG
A

_H
EA

D
ER

36
FPG

A
_H

EA
D

ER
37

FPG
A

_H
EA

D
ER

38
FPG

A
_H

EA
D

ER
39

FPG
A

_H
EA

D
ER

40
FPG

A
_H

EA
D

ER
41

FPG
A

_H
EA

D
ER

42
FPG

A
_H

EA
D

ER
43

FPG
A

_H
EA

D
ER

44
FPG

A
_H

EA
D

ER
45

FPG
A

_H
EA

D
ER

46
FPG

A
_H

EA
D

ER
47

FPG
A

_H
EA

D
ER

48
FPG

A
_H

EA
D

ER
49

FPG
A

_H
EA

D
ER

50
FPG

A
_H

EA
D

ER
51

FPG
A

_H
EA

D
ER

52
FPG

A
_H

EA
D

ER
53

FPG
A

_H
EA

D
ER

54
FPG

A
_H

EA
D

ER
55

FPG
A

_H
EA

D
ER

56
FPG

A
_H

EA
D

ER
57

FPG
A

_H
EA

D
ER

58
FPG

A
_H

EA
D

ER
59

FPG
A

_H
EA

D
ER

60
FPG

A
_H

EA
D

ER
61

FPG
A

_H
EA

D
ER

62
FPG

A
_H

EA
D

ER
64

FPG
A

_H
EA

D
ER

65
FPG

A
_H

EA
D

ER
66

FPG
A

_H
EA

D
ER

67
FPG

A
_H

EA
D

ER
68

FPG
A

_H
EA

D
ER

69
FPG

A
_H

EA
D

ER
70

FPG
A

_H
EA

D
ER

71
FPG

A
_H

EA
D

ER
72

FPG
A

_H
EA

D
ER

73
FPG

A
_H

EA
D

ER
74

FPG
A

_H
EA

D
ER

75
FPG

A
_H

EA
D

ER
76

FPG
A

_H
EA

D
ER

77
FPG

A
_H

EA
D

ER
78

FPG
A

_H
EA

D
ER

79

FPG
A

_H
EA

D
ER

80
FPG

A
_H

EA
D

ER
81

FPG
A

_H
EA

D
ER

82

B
O

O
T.TX

B
O

O
T.R

X
U

A
R

T1.TX
U

A
R

T1.R
X

H
EA

D
ER

.U
SB

_D
M

_PU
LLU

P
H

EA
D

ER
.D

B
G

_SW
CLK

H
EA

D
ER

.D
B

G
_SW

D
IO

H
EA

D
ER

.D
B

G
_SW

O

G
N

D

1.2V
1.2V
3.3V
3.3V
3.3V
3.3V

12.0V

G
N

D

TC
K

TD
I

TM
S

TD
O

FPG
A

 JTA
G

JTA
G

JTA
G

.TD
O

JTA
G

.TM
S

JTA
G

.TC
K

JTA
G

.TD
I

JTA
G

H
EA

D
ER

U
A

R
T1

B
O

O
T

FPG
A

_H
EA

D
ER

[0..83]

1
2

3
4

JTA
G

_H

H
eader 2X

2

1
2

3
4

FPG
A

_H
_C

H
eader 2X

2

1
2

3
4

5
6

7
8

9
10

11
12

PO
W

ER
_H

H
eader 6X

2

1
2

3
4

5
6

7
8

SC
U

_H

H
eader 4X

2

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

FPG
A

_H
_A

H
eader 20X

2

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

FPG
A

_H
_B

H
eader 20X

2

G
N

D

407fdd40

H
eaders

PIFPGA0H0A01
PIFPGA0H0A02

PIFPGA0H0A03
PIFPGA0H0A04

PIFPGA0H0A05
PIFPGA0H0A06

PIFPGA0H0A07
PIFPGA0H0A08

PIFPGA0H0A09
PIFPGA0H0A010

PIFPGA0H0A011
PIFPGA0H0A012

PIFPGA0H0A013
PIFPGA0H0A014

PIFPGA0H0A015
PIFPGA0H0A016

PIFPGA0H0A017
PIFPGA0H0A018

PIFPGA0H0A019
PIFPGA0H0A020

PIFPGA0H0A021
PIFPGA0H0A022

PIFPGA0H0A023
PIFPGA0H0A024

PIFPGA0H0A025
PIFPGA0H0A026

PIFPGA0H0A027
PIFPGA0H0A028

PIFPGA0H0A029
PIFPGA0H0A030

PIFPGA0H0A031
PIFPGA0H0A032

PIFPGA0H0A033
PIFPGA0H0A034

PIFPGA0H0A035
PIFPGA0H0A036

PIFPGA0H0A037
PIFPGA0H0A038

PIFPGA0H0A039
PIFPGA0H0A040

COFPGA0H0A

PIFPGA0H0B01
PIFPGA0H0B02

PIFPGA0H0B03
PIFPGA0H0B04

PIFPGA0H0B05
PIFPGA0H0B06

PIFPGA0H0B07
PIFPGA0H0B08

PIFPGA0H0B09
PIFPGA0H0B010

PIFPGA0H0B011
PIFPGA0H0B012

PIFPGA0H0B013
PIFPGA0H0B014

PIFPGA0H0B015
PIFPGA0H0B016

PIFPGA0H0B017
PIFPGA0H0B018

PIFPGA0H0B019
PIFPGA0H0B020

PIFPGA0H0B021
PIFPGA0H0B022

PIFPGA0H0B023
PIFPGA0H0B024

PIFPGA0H0B025
PIFPGA0H0B026

PIFPGA0H0B027
PIFPGA0H0B028

PIFPGA0H0B029
PIFPGA0H0B030

PIFPGA0H0B031
PIFPGA0H0B032

PIFPGA0H0B033
PIFPGA0H0B034

PIFPGA0H0B035
PIFPGA0H0B036

PIFPGA0H0B037
PIFPGA0H0B038

PIFPGA0H0B039
PIFPGA0H0B040

COFPGA0H0B

PIFPGA0H0C01
PIFPGA0H0C02

PIFPGA0H0C03
PIFPGA0H0C04

COFPGA0H0C

PIJTAG0H01
PIJTAG0H02

PIJTAG0H03
PIJTAG0H04

COJTAG0H

PIPOWER0H01
PIPOWER0H02

PIPOWER0H03
PIPOWER0H04

PIPOWER0H05
PIPOWER0H06

PIPOWER0H07
PIPOWER0H08

PIPOWER0H09
PIPOWER0H010

PIPOWER0H011
PIPOWER0H012

COPOWER0H

PISCU0H01
PISCU0H02

PISCU0H03
PISCU0H04

PISCU0H05
PISCU0H06

PISCU0H07
PISCU0H08

COSCU0H

PIPOWER0H02

PIPOWER0H04

PIPOWER0H06

PIPOWER0H08

PIPOWER0H010

PIPOWER0H012
PIPOWER0H011

PIFPGA0H0B024

PIFPGA0H0C04

PIPOWER0H01

PIPOWER0H03

PIPOWER0H05

PIPOWER0H07

PIPOWER0H09

PISCU0H04

NLUART1

NLUART10RX

P
O
U
A
R
T
1

PISCU0H03

NLUART1

NLUART10TX

P
O
U
A
R
T
1

PISCU0H08

NLHEADER

NLHEADER0DBG0SWO

P
O
H
E
A
D
E
R

PISCU0H07

NLHEADER

NLHEADER0DBG0SWDIO

P
O
H
E
A
D
E
R

PISCU0H06

NLHEADER

NLHEADER0DBG0SWCLK

P
O
H
E
A
D
E
R

PISCU0H05

NLHEADER

NLHEADER0USB0DM0PULLUP

P
O
H
E
A
D
E
R

PIJTAG0H02

NLJTAG

NLJTAG0TDO

P
O
J
T
A
G

PIJTAG0H04

NLJTAG

NLJTAG0TMS

P
O
J
T
A
G

PIJTAG0H03

NLJTAG

NLJTAG0TDI

P
O
J
T
A
G

PIJTAG0H01

NLJTAG

NLJTAG0TCK

P
O
J
T
A
G

PISCU0H02

NLBOOT

NLBOOT0RX

P
O
B
O
O
T

PISCU0H01

NLBOOT

NLBOOT0TX

P
O
B
O
O
T

PIFPGA0H0A01

NLFPGA0HEADER0000830

NLFPGA0HEADER0

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A02

NLFPGA0HEADER0000830

NLFPGA0HEADER1

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A03
NLFPGA0HEADER0000830

NLFPGA0HEADER2

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A04
NLFPGA0HEADER0000830

NLFPGA0HEADER3

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A05
NLFPGA0HEADER0000830

NLFPGA0HEADER4
P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A06
NLFPGA0HEADER0000830

NLFPGA0HEADER5
P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A07

NLFPGA0HEADER0000830
NLFPGA0HEADER6

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A08

NLFPGA0HEADER0000830
NLFPGA0HEADER7

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A09

NLFPGA0HEADER0000830

NLFPGA0HEADER8

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A010

NLFPGA0HEADER0000830

NLFPGA0HEADER9

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A011

NLFPGA0HEADER0000830

N
L
F
P
G
A
0
H
E
A
D
E
R
1
0

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A012

NLFPGA0HEADER0000830

N
L
F
P
G
A
0
H
E
A
D
E
R
1
1

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A013

NLFPGA0HEADER0000830

NLFPGA0HEADER12

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A014

NLFPGA0HEADER0000830

NLFPGA0HEADER13

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A015

NLFPGA0HEADER0000830

NLFPGA0HEADER14

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A016

NLFPGA0HEADER0000830

NLFPGA0HEADER15

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A017

NLFPGA0HEADER0000830

NLFPGA0HEADER16

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A018

NLFPGA0HEADER0000830

NLFPGA0HEADER17

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A019

NLFPGA0HEADER0000830

NLFPGA0HEADER18

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A020

NLFPGA0HEADER0000830

NLFPGA0HEADER19

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A021

NLFPGA0HEADER0000830

NLFPGA0HEADER20

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A022

NLFPGA0HEADER0000830

NLFPGA0HEADER21

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A023

NLFPGA0HEADER0000830

NLFPGA0HEADER22

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A024

NLFPGA0HEADER0000830

NLFPGA0HEADER23

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A025

NLFPGA0HEADER0000830

NLFPGA0HEADER24

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A026

NLFPGA0HEADER0000830

NLFPGA0HEADER25

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A027

NLFPGA0HEADER0000830

NLFPGA0HEADER26

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A028

NLFPGA0HEADER0000830

NLFPGA0HEADER27

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A029

NLFPGA0HEADER0000830

NLFPGA0HEADER28

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A030

NLFPGA0HEADER0000830

NLFPGA0HEADER29

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A031

NLFPGA0HEADER0000830

NLFPGA0HEADER30

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A032

NLFPGA0HEADER0000830

NLFPGA0HEADER31

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A033

NLFPGA0HEADER0000830

NLFPGA0HEADER32

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A034

NLFPGA0HEADER0000830

NLFPGA0HEADER33

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A035

NLFPGA0HEADER0000830

NLFPGA0HEADER34

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A036

NLFPGA0HEADER0000830

NLFPGA0HEADER35

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A037

NLFPGA0HEADER0000830

NLFPGA0HEADER36

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A038

NLFPGA0HEADER0000830

NLFPGA0HEADER37

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A039

NLFPGA0HEADER0000830

NLFPGA0HEADER38

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0A040

NLFPGA0HEADER0000830

NLFPGA0HEADER39

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B01

NLFPGA0HEADER0000830

NLFPGA0HEADER40

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B02

NLFPGA0HEADER0000830

NLFPGA0HEADER41

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B03

NLFPGA0HEADER0000830

N
L
F
P
G
A
0
H
E
A
D
E
R
4
2

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B04

NLFPGA0HEADER0000830

N
L
F
P
G
A
0
H
E
A
D
E
R
4
3

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B05

NLFPGA0HEADER0000830

NLFPGA0HEADER44

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B06

NLFPGA0HEADER0000830

NLFPGA0HEADER45

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B07

NLFPGA0HEADER0000830

NLFPGA0HEADER46

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B08

NLFPGA0HEADER0000830

NLFPGA0HEADER47

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B09

NLFPGA0HEADER0000830

NLFPGA0HEADER48

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B010

NLFPGA0HEADER0000830

NLFPGA0HEADER49

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B011

NLFPGA0HEADER0000830

NLFPGA0HEADER50

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B012

NLFPGA0HEADER0000830

NLFPGA0HEADER51

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B013

NLFPGA0HEADER0000830

NLFPGA0HEADER52

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B014

NLFPGA0HEADER0000830

NLFPGA0HEADER53

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B015

NLFPGA0HEADER0000830

NLFPGA0HEADER54

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B016

NLFPGA0HEADER0000830

NLFPGA0HEADER55

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B017

NLFPGA0HEADER0000830

NLFPGA0HEADER56

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B018

NLFPGA0HEADER0000830

NLFPGA0HEADER57

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B019

NLFPGA0HEADER0000830

NLFPGA0HEADER58

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B020

NLFPGA0HEADER0000830

NLFPGA0HEADER59

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B021

NLFPGA0HEADER0000830

NLFPGA0HEADER60

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B022

NLFPGA0HEADER0000830

NLFPGA0HEADER61

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B023

NLFPGA0HEADER0000830

NLFPGA0HEADER62

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

NLFPGA0HEADER0000830
P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B025

NLFPGA0HEADER0000830

NLFPGA0HEADER64

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B026

NLFPGA0HEADER0000830

NLFPGA0HEADER65

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B027

NLFPGA0HEADER0000830

NLFPGA0HEADER66

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B028

NLFPGA0HEADER0000830

NLFPGA0HEADER67

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B029

NLFPGA0HEADER0000830

NLFPGA0HEADER68

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B030

NLFPGA0HEADER0000830

NLFPGA0HEADER69

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B031

NLFPGA0HEADER0000830

NLFPGA0HEADER70

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B032

NLFPGA0HEADER0000830

NLFPGA0HEADER71

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B033

NLFPGA0HEADER0000830

NLFPGA0HEADER72

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B034

NLFPGA0HEADER0000830

NLFPGA0HEADER73

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B035

NLFPGA0HEADER0000830

NLFPGA0HEADER74

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B036

NLFPGA0HEADER0000830

NLFPGA0HEADER75

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B037

NLFPGA0HEADER0000830

NLFPGA0HEADER76

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B038

NLFPGA0HEADER0000830

NLFPGA0HEADER77

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B039

NLFPGA0HEADER0000830

NLFPGA0HEADER78

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0B040

NLFPGA0HEADER0000830

NLFPGA0HEADER79

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0C01

NLFPGA0HEADER0000830

NLFPGA0HEADER80

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0C02

NLFPGA0HEADER0000830

NLFPGA0HEADER81

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

PIFPGA0H0C03

NLFPGA0HEADER0000830

NLFPGA0HEADER82

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

NLFPGA0HEADER0000830
P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
O
B
O
O
T

P
O
B
O
O
T
0
R
X

P
O
B
O
O
T
0
T
X

P
O
F
P
G
A
0
H
E
A
D
E
R
0

P
O
F
P
G
A
0
H
E
A
D
E
R
1

P
O
F
P
G
A
0
H
E
A
D
E
R
2

P
O
F
P
G
A
0
H
E
A
D
E
R
3

P
O
F
P
G
A
0
H
E
A
D
E
R
4

P
O
F
P
G
A
0
H
E
A
D
E
R
5

P
O
F
P
G
A
0
H
E
A
D
E
R
6

P
O
F
P
G
A
0
H
E
A
D
E
R
7

P
O
F
P
G
A
0
H
E
A
D
E
R
8

P
O
F
P
G
A
0
H
E
A
D
E
R
9

P
O
F
P
G
A
0
H
E
A
D
E
R
1
0

P
O
F
P
G
A
0
H
E
A
D
E
R
1
1

P
O
F
P
G
A
0
H
E
A
D
E
R
1
2

P
O
F
P
G
A
0
H
E
A
D
E
R
1
3

P
O
F
P
G
A
0
H
E
A
D
E
R
1
4

P
O
F
P
G
A
0
H
E
A
D
E
R
1
5

P
O
F
P
G
A
0
H
E
A
D
E
R
1
6

P
O
F
P
G
A
0
H
E
A
D
E
R
1
7

P
O
F
P
G
A
0
H
E
A
D
E
R
1
8

P
O
F
P
G
A
0
H
E
A
D
E
R
1
9

P
O
F
P
G
A
0
H
E
A
D
E
R
2
0

P
O
F
P
G
A
0
H
E
A
D
E
R
2
1

P
O
F
P
G
A
0
H
E
A
D
E
R
2
2

P
O
F
P
G
A
0
H
E
A
D
E
R
2
3

P
O
F
P
G
A
0
H
E
A
D
E
R
2
4

P
O
F
P
G
A
0
H
E
A
D
E
R
2
5

P
O
F
P
G
A
0
H
E
A
D
E
R
2
6

P
O
F
P
G
A
0
H
E
A
D
E
R
2
7

P
O
F
P
G
A
0
H
E
A
D
E
R
2
8

P
O
F
P
G
A
0
H
E
A
D
E
R
2
9

P
O
F
P
G
A
0
H
E
A
D
E
R
3
0

P
O
F
P
G
A
0
H
E
A
D
E
R
3
1

P
O
F
P
G
A
0
H
E
A
D
E
R
3
2

P
O
F
P
G
A
0
H
E
A
D
E
R
3
3

P
O
F
P
G
A
0
H
E
A
D
E
R
3
4

P
O
F
P
G
A
0
H
E
A
D
E
R
3
5

P
O
F
P
G
A
0
H
E
A
D
E
R
3
6

P
O
F
P
G
A
0
H
E
A
D
E
R
3
7

P
O
F
P
G
A
0
H
E
A
D
E
R
3
8

P
O
F
P
G
A
0
H
E
A
D
E
R
3
9

P
O
F
P
G
A
0
H
E
A
D
E
R
4
0

P
O
F
P
G
A
0
H
E
A
D
E
R
4
1

P
O
F
P
G
A
0
H
E
A
D
E
R
4
2

P
O
F
P
G
A
0
H
E
A
D
E
R
4
3

P
O
F
P
G
A
0
H
E
A
D
E
R
4
4

P
O
F
P
G
A
0
H
E
A
D
E
R
4
5

P
O
F
P
G
A
0
H
E
A
D
E
R
4
6

P
O
F
P
G
A
0
H
E
A
D
E
R
4
7

P
O
F
P
G
A
0
H
E
A
D
E
R
4
8

P
O
F
P
G
A
0
H
E
A
D
E
R
4
9

P
O
F
P
G
A
0
H
E
A
D
E
R
5
0

P
O
F
P
G
A
0
H
E
A
D
E
R
5
1

P
O
F
P
G
A
0
H
E
A
D
E
R
5
2

P
O
F
P
G
A
0
H
E
A
D
E
R
5
3

P
O
F
P
G
A
0
H
E
A
D
E
R
5
4

P
O
F
P
G
A
0
H
E
A
D
E
R
5
5

P
O
F
P
G
A
0
H
E
A
D
E
R
5
6

P
O
F
P
G
A
0
H
E
A
D
E
R
5
7

P
O
F
P
G
A
0
H
E
A
D
E
R
5
8

P
O
F
P
G
A
0
H
E
A
D
E
R
5
9

P
O
F
P
G
A
0
H
E
A
D
E
R
6
0

P
O
F
P
G
A
0
H
E
A
D
E
R
6
1

P
O
F
P
G
A
0
H
E
A
D
E
R
6
2

P
O
F
P
G
A
0
H
E
A
D
E
R
6
3

P
O
F
P
G
A
0
H
E
A
D
E
R
6
4

P
O
F
P
G
A
0
H
E
A
D
E
R
6
5

P
O
F
P
G
A
0
H
E
A
D
E
R
6
6

P
O
F
P
G
A
0
H
E
A
D
E
R
6
7

P
O
F
P
G
A
0
H
E
A
D
E
R
6
8

P
O
F
P
G
A
0
H
E
A
D
E
R
6
9

P
O
F
P
G
A
0
H
E
A
D
E
R
7
0

P
O
F
P
G
A
0
H
E
A
D
E
R
7
1

P
O
F
P
G
A
0
H
E
A
D
E
R
7
2

P
O
F
P
G
A
0
H
E
A
D
E
R
7
3

P
O
F
P
G
A
0
H
E
A
D
E
R
7
4

P
O
F
P
G
A
0
H
E
A
D
E
R
7
5

P
O
F
P
G
A
0
H
E
A
D
E
R
7
6

P
O
F
P
G
A
0
H
E
A
D
E
R
7
7

P
O
F
P
G
A
0
H
E
A
D
E
R
7
8

P
O
F
P
G
A
0
H
E
A
D
E
R
7
9

P
O
F
P
G
A
0
H
E
A
D
E
R
8
0

P
O
F
P
G
A
0
H
E
A
D
E
R
8
1

P
O
F
P
G
A
0
H
E
A
D
E
R
8
2

P
O
F
P
G
A
0
H
E
A
D
E
R
8
3

P
O
F
P
G
A
0
H
E
A
D
E
R
0
0
0
0
8
3
0

P
O
H
E
A
D
E
R

POHEADER0DBG0SWCLK
POHEADER0DBG0SWDIO
POHEADER0DBG0SWO
POHEADER0USB0DM0PULLUP

P
O
J
T
A
G

P
O
J
T
A
G
0
T
C
K

P
O
J
T
A
G
0
T
D
I

P
O
J
T
A
G
0
T
D
O

P
O
J
T
A
G
0
T
M
S

P
O
U
A
R
T
1

P
O
U
A
R
T
1
0
R
X

P
O
U
A
R
T
1
0
T
X

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

A
4

D
ate:

17.11.2013
Sheet of

File:
C

:\U
sers\..\decoupling.SchD

oc
D

raw
n B

y:

1.2V

G
N

D

3.3V

G
N

D

3.3V

G
N

D

100nF
C

8
100nF
C

9
100nF
C

10
100nF
C

20
100nF
C

21
100nF
C

22
100nF
C

23
100nF
C

24
100nF
C

25
100nF
C

26

100nF
C

27
100nF
C

28
100nF
C

29
100nF
C

30
100nF
C

31
100nF
C

32
100nF
C

33
100nF
C

34
100nF
C

35
100nF
C

36

100nF
C

47
100nF
C

48
100nF
C

49
100nF
C

50
100nF
C

51
100nF
C

52
100nF
C

53
100nF
C

54
100nF
C

55
100nF
C

56

100nF
C

37
100nF
C

38
100nF
C

39
100nF
C

40
100nF
C

41
100nF
C

42
100nF
C

43
100nF
C

44
100nF
C

45
100nF
C

46

100nF
C

57
100nF
C

58
100nF
C

59
100nF
C

60
100nF
C

61
100nF
C

62
100nF
C

63
100nF
C

64
100nF
C

65
100nF
C

66

407fdd40

D
ecoupling

PIC801PIC802
COC8

PIC901PIC902
COC9

PIC1001PIC1002
COC10

PIC2001PIC2002
COC20

PIC2101PIC2102
COC21

PIC2201PIC2202
COC22

PIC2301PIC2302
COC23

PIC2401PIC2402
COC24

PIC2501PIC2502
COC25

PIC2601PIC2602
COC26

PIC2701PIC2702
COC27

PIC2801PIC2802
COC28

PIC2901PIC2902
COC29

PIC3001PIC3002
COC30

PIC3101PIC3102
COC31

PIC3201PIC3202
COC32

PIC3301PIC3302
COC33

PIC3401PIC3402
COC34

PIC3501PIC3502
COC35

PIC3601PIC3602
COC36

PIC3701PIC3702
COC37

PIC3801PIC3802
COC38

PIC3901PIC3902
COC39

PIC4001PIC4002
COC40

PIC4101PIC4102
COC41

PIC4201PIC4202
COC42

PIC4301PIC4302
COC43

PIC4401PIC4402
COC44

PIC4501PIC4502
COC45

PIC4601PIC4602
COC46

PIC4701PIC4702
COC47

PIC4801PIC4802
COC48

PIC4901PIC4902
COC49

PIC5001PIC5002
COC50

PIC5101PIC5102
COC51

PIC5201PIC5202
COC52

PIC5301PIC5302
COC53

PIC5401PIC5402
COC54

PIC5501PIC5502
COC55

PIC5601PIC5602
COC56

PIC5701PIC5702
COC57

PIC5801PIC5802
COC58

PIC5901PIC5902
COC59

PIC6001PIC6002
COC60

PIC6101PIC6102
COC61

PIC6201PIC6202
COC62

PIC6301PIC6302
COC63

PIC6401PIC6402
COC64

PIC6501PIC6502
COC65

PIC6601PIC6602
COC66

PIC801
PIC901

PIC1001
PIC2001

PIC2101
PIC2201

PIC2301
PIC2401

PIC2501
PIC2601

PIC2701
PIC2801

PIC2901
PIC3001

PIC3101
PIC3201

PIC3301
PIC3401

PIC3501
PIC3601

PIC3701
PIC3801

PIC3901
PIC4001

PIC4101
PIC4201

PIC4301
PIC4401

PIC4501
PIC4601

PIC4701
PIC4801

PIC4901
PIC5001

PIC5101
PIC5201

PIC5301
PIC5401

PIC5501
PIC5601

PIC5701
PIC5801

PIC5901
PIC6001

PIC6101
PIC6201

PIC6301
PIC6401

PIC6501
PIC6601

PIC802
PIC902

PIC1002
PIC2002

PIC2102
PIC2202

PIC2302
PIC2402

PIC2502
PIC2602

PIC2702
PIC2802

PIC2902
PIC3002

PIC3102
PIC3202

PIC3302
PIC3402

PIC3502
PIC3602

PIC3702
PIC3802

PIC3902
PIC4002

PIC4102
PIC4202

PIC4302
PIC4402

PIC4502
PIC4602

PIC4702
PIC4802

PIC4902
PIC5002

PIC5102
PIC5202

PIC5302
PIC5402

PIC5502
PIC5602

PIC5702
PIC5802

PIC5902
PIC6002

PIC6102
PIC6202

PIC6302
PIC6402

PIC6502
PIC6602

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

A
4

D
ate:

17.11.2013
Sheet of

File:
C

:\U
sers\..\leds_logo.SchD

oc
D

raw
n B

y:

LED
21

H
SM

C
-C

190

LED
22

H
SM

C
-C

190

G
N

D

56R

R
20

R
es 1206 for logo

56R

R
21

R
es 1206 for logo

3.3V

407fdd40

B
arricellis eyes

PILED2101
PILED2102

COLED21

PILED2201
PILED2202

COLED22

PIR2001
PIR2002

COR20

PIR2101
PIR2102

COR21

PIR2001

PIR2101

PILED2102

PILED2202

PILED2101
PIR2002

PILED2201
PIR2102

PAC401PAC402
COC4

PAC501PAC502
COC5

PAC601PAC602
COC6

PAC701PAC702
COC7

PAC801
PAC802 COC8 PAC901
PAC902 COC9 PAC1001
PAC1002 COC10

PAC1101PAC1102
COC11

PAC1201PAC1202
COC12

PAC1301PAC1302
COC13

PAC1401

PAC1402

COC14
PAC1501

PAC1502

COC15

PAC1601
PAC1602

COC16

PAC1701
PAC1702

COC17

PAC1801
PAC1802

COC18

PAC1901
PAC1902

COC19

PAC2001
PAC2002
COC20 PAC2101

PAC2102 COC21

PAC2201

PAC2202

COC22

PAC2301

PAC2302

COC23

PAC2401

PAC2402

COC24

PAC2501
PAC2502 COC25

PAC2601

PAC2602

COC26

PAC2701

PAC2702

COC27
PAC2801

PAC2802

COC28
PAC2901

PAC2902

COC29
PAC3001

PAC3002

COC30
PAC3101

PAC3102

COC31
PAC3201

PAC3202
COC32 PAC3301

PAC3302
COC33

PAC3401
PAC3402

COC34

PAC3501
PAC3502

COC35

PAC3601
PAC3602

COC36

PAC3701
PAC3702

COC37

PAC3801
PAC3802

COC38

PAC3901
PAC3902

COC39

PAC4001
PAC4002

COC40

PAC4101
PAC4102

COC41

PAC4201
PAC4202

COC42

PAC4301
PAC4302
COC43

PAC4401
PAC4402
COC44

PAC4501
PAC4502
COC45

PAC4601
PAC4602
COC46 PAC4701

PAC4702
COC47 PAC4801

PAC4802 COC48 PAC4901
PAC4902 COC49 PAC5001
PAC5002
COC50

PAC5101
PAC5102 COC51PAC5201
PAC5202
COC52PAC5301

PAC5302
COC53

PAC5401
PAC5402 COC54

PAC5501
PAC5502
COC55PAC5601

PAC5602
COC56PAC5701

PAC5702
COC57

PAC5801
PAC5802
COC58

PAC5901
PAC5902
COC59 PAC6001

PAC6002
COC60 PAC6101

PAC6102 COC61

PAC6201
PAC6202
COC62

PAC6301
PAC6302
COC63PAC6401

PAC6402
COC64PAC6501

PAC6502
COC65PAC6601

PAC6602
COC66

PAE101 PAE102
COE1

PAE201 PAE202

COE2 PAE301 PAE302
COE3 PAE401 PAE402
COE4

PAE501 PAE502

COE5PAE801 PAE802
COE8PAE901 PAE902
COE9PAE1001 PAE1002
COE10

PAE1101 PAE1102
COE11

PAFPGA0V18
PAFPGA0V17

PAFPGA0V16
PAFPGA0V15

PAFPGA0V14
PAFPGA0V13

PAFPGA0V12
PAFPGA0V11

PAFPGA0V10
PAFPGA0V9

PAFPGA0V8
PAFPGA0V7

PAFPGA0V6
PAFPGA0V5

PAFPGA0V4
PAFPGA0V3

PAFPGA0V2
PAFPGA0V1

PAFPGA0U18
PAFPGA0U17

PAFPGA0U16
PAFPGA0U15

PAFPGA0U14
PAFPGA0U13

PAFPGA0U12
PAFPGA0U11

PAFPGA0U10
PAFPGA0U9

PAFPGA0U8
PAFPGA0U7

PAFPGA0U6
PAFPGA0U5

PAFPGA0U4
PAFPGA0U3

PAFPGA0U2
PAFPGA0U1

PAFPGA0T18
PAFPGA0T17

PAFPGA0T16
PAFPGA0T15

PAFPGA0T14
PAFPGA0T13

PAFPGA0T12
PAFPGA0T11

PAFPGA0T10
PAFPGA0T9

PAFPGA0T8
PAFPGA0T7

PAFPGA0T6
PAFPGA0T5

PAFPGA0T4
PAFPGA0T3

PAFPGA0T2
PAFPGA0T1

PAFPGA0R18
PAFPGA0R17

PAFPGA0R16
PAFPGA0R15

PAFPGA0R14
PAFPGA0R13

PAFPGA0R12
PAFPGA0R11

PAFPGA0R10
PAFPGA0R9

PAFPGA0R8
PAFPGA0R7

PAFPGA0R6
PAFPGA0R5

PAFPGA0R4
PAFPGA0R3

PAFPGA0R2
PAFPGA0R1

PAFPGA0P18
PAFPGA0P17

PAFPGA0P16
PAFPGA0P15

PAFPGA0P14
PAFPGA0P13

PAFPGA0P12
PAFPGA0P11

PAFPGA0P10
PAFPGA0P9

PAFPGA0P8
PAFPGA0P7

PAFPGA0P6
PAFPGA0P5

PAFPGA0P4
PAFPGA0P3

PAFPGA0P2
PAFPGA0P1

PAFPGA0N18
PAFPGA0N17

PAFPGA0N16
PAFPGA0N15

PAFPGA0N14
PAFPGA0N13

PAFPGA0N12
PAFPGA0N11

PAFPGA0N10
PAFPGA0N9

PAFPGA0N8
PAFPGA0N7

PAFPGA0N6
PAFPGA0N5

PAFPGA0N4
PAFPGA0N3

PAFPGA0N2
PAFPGA0N1

PAFPGA0M18
PAFPGA0M17

PAFPGA0M16
PAFPGA0M15

PAFPGA0M14
PAFPGA0M13

PAFPGA0M12
PAFPGA0M11

PAFPGA0M10
PAFPGA0M9

PAFPGA0M8
PAFPGA0M7

PAFPGA0M6
PAFPGA0M5

PAFPGA0M4
PAFPGA0M3

PAFPGA0M2
PAFPGA0M1

PAFPGA0L18
PAFPGA0L17

PAFPGA0L16
PAFPGA0L15

PAFPGA0L14
PAFPGA0L13

PAFPGA0L12
PAFPGA0L11

PAFPGA0L10
PAFPGA0L9

PAFPGA0L8
PAFPGA0L7

PAFPGA0L6
PAFPGA0L5

PAFPGA0L4
PAFPGA0L3

PAFPGA0L2
PAFPGA0L1

PAFPGA0K18
PAFPGA0K17

PAFPGA0K16
PAFPGA0K15

PAFPGA0K14
PAFPGA0K13

PAFPGA0K12
PAFPGA0K11

PAFPGA0K10
PAFPGA0K9

PAFPGA0K8
PAFPGA0K7

PAFPGA0K6
PAFPGA0K5

PAFPGA0K4
PAFPGA0K3

PAFPGA0K2
PAFPGA0K1

PAFPGA0J18
PAFPGA0J17

PAFPGA0J16
PAFPGA0J15

PAFPGA0J14
PAFPGA0J13

PAFPGA0J12
PAFPGA0J11

PAFPGA0J10
PAFPGA0J9

PAFPGA0J8
PAFPGA0J7

PAFPGA0J6
PAFPGA0J5

PAFPGA0J4
PAFPGA0J3

PAFPGA0J2
PAFPGA0J1

PAFPGA0H18
PAFPGA0H17

PAFPGA0H16
PAFPGA0H15

PAFPGA0H14
PAFPGA0H13

PAFPGA0H12
PAFPGA0H11

PAFPGA0H10
PAFPGA0H9

PAFPGA0H8
PAFPGA0H7

PAFPGA0H6
PAFPGA0H5

PAFPGA0H4
PAFPGA0H3

PAFPGA0H2
PAFPGA0H1

PAFPGA0G18
PAFPGA0G17

PAFPGA0G16
PAFPGA0G15

PAFPGA0G14
PAFPGA0G13

PAFPGA0G12
PAFPGA0G11

PAFPGA0G10
PAFPGA0G9

PAFPGA0G8
PAFPGA0G7

PAFPGA0G6
PAFPGA0G5

PAFPGA0G4
PAFPGA0G3

PAFPGA0G2
PAFPGA0G1

PAFPGA0F18
PAFPGA0F17

PAFPGA0F16
PAFPGA0F15

PAFPGA0F14
PAFPGA0F13

PAFPGA0F12
PAFPGA0F11

PAFPGA0F10
PAFPGA0F9

PAFPGA0F8
PAFPGA0F7

PAFPGA0F6
PAFPGA0F5

PAFPGA0F4
PAFPGA0F3

PAFPGA0F2
PAFPGA0F1

PAFPGA0E18
PAFPGA0E17

PAFPGA0E16
PAFPGA0E15

PAFPGA0E14
PAFPGA0E13

PAFPGA0E12
PAFPGA0E11

PAFPGA0E10
PAFPGA0E9

PAFPGA0E8
PAFPGA0E7

PAFPGA0E6
PAFPGA0E5

PAFPGA0E4
PAFPGA0E3

PAFPGA0E2
PAFPGA0E1

PAFPGA0D18
PAFPGA0D17

PAFPGA0D16
PAFPGA0D15

PAFPGA0D14
PAFPGA0D13

PAFPGA0D12
PAFPGA0D11

PAFPGA0D10
PAFPGA0D9

PAFPGA0D8
PAFPGA0D7

PAFPGA0D6
PAFPGA0D5

PAFPGA0D4
PAFPGA0D3

PAFPGA0D2
PAFPGA0D1

PAFPGA0C18
PAFPGA0C17

PAFPGA0C16
PAFPGA0C15

PAFPGA0C14
PAFPGA0C13

PAFPGA0C12
PAFPGA0C11

PAFPGA0C10
PAFPGA0C9

PAFPGA0C8
PAFPGA0C7

PAFPGA0C6
PAFPGA0C5

PAFPGA0C4
PAFPGA0C3

PAFPGA0C2
PAFPGA0C1

PAFPGA0B18
PAFPGA0B17

PAFPGA0B16
PAFPGA0B15

PAFPGA0B14
PAFPGA0B13

PAFPGA0B12
PAFPGA0B11

PAFPGA0B10
PAFPGA0B9

PAFPGA0B8
PAFPGA0B7

PAFPGA0B6
PAFPGA0B5

PAFPGA0B4
PAFPGA0B3

PAFPGA0B2
PAFPGA0B1

PAFPGA0A18
PAFPGA0A17

PAFPGA0A16
PAFPGA0A15

PAFPGA0A14
PAFPGA0A13

PAFPGA0A12
PAFPGA0A11

PAFPGA0A10
PAFPGA0A9

PAFPGA0A8
PAFPGA0A7

PAFPGA0A6
PAFPGA0A5

PAFPGA0A4
PAFPGA0A3

PAFPGA0A2
PAFPGA0A1

COFPGA

PAFPGA0H0A040

PAFPGA0H0A039

PAFPGA0H0A038

PAFPGA0H0A037

PAFPGA0H0A036

PAFPGA0H0A035

PAFPGA0H0A034

PAFPGA0H0A033

PAFPGA0H0A032

PAFPGA0H0A031

PAFPGA0H0A030

PAFPGA0H0A029

PAFPGA0H0A028

PAFPGA0H0A027

PAFPGA0H0A026

PAFPGA0H0A025

PAFPGA0H0A024

PAFPGA0H0A023

PAFPGA0H0A022

PAFPGA0H0A021

PAFPGA0H0A020

PAFPGA0H0A019

PAFPGA0H0A018

PAFPGA0H0A017

PAFPGA0H0A016

PAFPGA0H0A015

PAFPGA0H0A014

PAFPGA0H0A013

PAFPGA0H0A012

PAFPGA0H0A011

PAFPGA0H0A010

PAFPGA0H0A09

PAFPGA0H0A08

PAFPGA0H0A07

PAFPGA0H0A06

PAFPGA0H0A05

PAFPGA0H0A04

PAFPGA0H0A03

PAFPGA0H0A02

PAFPGA0H0A01

C
O
F
P
G
A
0
H
0
A

PAFPGA0H0B040

PAFPGA0H0B039

PAFPGA0H0B038

PAFPGA0H0B037

PAFPGA0H0B036

PAFPGA0H0B035

PAFPGA0H0B034

PAFPGA0H0B033

PAFPGA0H0B032

PAFPGA0H0B031

PAFPGA0H0B030

PAFPGA0H0B029

PAFPGA0H0B028

PAFPGA0H0B027

PAFPGA0H0B026

PAFPGA0H0B025

PAFPGA0H0B024

PAFPGA0H0B023

PAFPGA0H0B022

PAFPGA0H0B021

PAFPGA0H0B020

PAFPGA0H0B019

PAFPGA0H0B018

PAFPGA0H0B017

PAFPGA0H0B016

PAFPGA0H0B015

PAFPGA0H0B014

PAFPGA0H0B013

PAFPGA0H0B012

PAFPGA0H0B011

PAFPGA0H0B010

PAFPGA0H0B09

PAFPGA0H0B08

PAFPGA0H0B07

PAFPGA0H0B06

PAFPGA0H0B05

PAFPGA0H0B04

PAFPGA0H0B03

PAFPGA0H0B02

PAFPGA0H0B01

C
O
F
P
G
A
0
H
0
B

PAFPGA0H0C04

PAFPGA0H0C03

PAFPGA0H0C02

PAFPGA0H0C01

COFPGA0H0C

PAJ10SH
PAJ101

PAJ102
PAJ103
PAJ104

PAJ105

PAJ100

COJ1

PAJTAG0H04

PAJTAG0H03

PAJTAG0H02

PAJTAG0H01

COJTAG0H

PAL103
PAL102

PAL104
PAL101

COL1

PAL202
PAL201

COL2

PALED202
PALED201

COLED2

PALED402
PALED401

COLED4

PALED501

PALED502

COLED5
PALED601

PALED602

COLED6
PALED701

PALED702

COLED7
PALED801

PALED802

COLED8
PALED901

PALED902

COLED9
PALED1001

PALED1002

COLED10
PALED1101

PALED1102

COLED11
PALED1201

PALED1202

COLED12
PALED1301

PALED1302

COLED13
PALED1401

PALED1402

COLED14
PALED1501

PALED1502

COLED15
PALED1601

PALED1602

COLED16
PALED1701

PALED1702

COLED17
PALED1801

PALED1802

COLED18
PALED1901

PALED1902

COLED19
PALED2001

PALED2002

COLED20

PALED2102
PALED2101

COLED21

PALED2202
PALED2201

C
O
L
E
D
2
2

PAMEM0DMEM023
PAMEM0DMEM024

PAMEM0DMEM025
PAMEM0DMEM026

PAMEM0DMEM027
PAMEM0DMEM028

PAMEM0DMEM029
PAMEM0DMEM030

PAMEM0DMEM031
PAMEM0DMEM032

PAMEM0DMEM033
PAMEM0DMEM034

PAMEM0DMEM035
PAMEM0DMEM036

PAMEM0DMEM037
PAMEM0DMEM038

PAMEM0DMEM039
PAMEM0DMEM040

PAMEM0DMEM041
PAMEM0DMEM042

PAMEM0DMEM043
PAMEM0DMEM044

PAMEM0DMEM022
PAMEM0DMEM021

PAMEM0DMEM020
PAMEM0DMEM019

PAMEM0DMEM018
PAMEM0DMEM017

PAMEM0DMEM016
PAMEM0DMEM015

PAMEM0DMEM014
PAMEM0DMEM013

PAMEM0DMEM012
PAMEM0DMEM011

PAMEM0DMEM010
PAMEM0DMEM09

PAMEM0DMEM08
PAMEM0DMEM07

PAMEM0DMEM06
PAMEM0DMEM05

PAMEM0DMEM04
PAMEM0DMEM03

PAMEM0DMEM02
PAMEM0DMEM01 COMEM0DMEM

PAMEM0IMEM0023
PAMEM0IMEM0024

PAMEM0IMEM0025
PAMEM0IMEM0026

PAMEM0IMEM0027
PAMEM0IMEM0028

PAMEM0IMEM0029
PAMEM0IMEM0030

PAMEM0IMEM0031
PAMEM0IMEM0032

PAMEM0IMEM0033
PAMEM0IMEM0034

PAMEM0IMEM0035
PAMEM0IMEM0036

PAMEM0IMEM0037
PAMEM0IMEM0038

PAMEM0IMEM0039
PAMEM0IMEM0040

PAMEM0IMEM0041
PAMEM0IMEM0042

PAMEM0IMEM0043
PAMEM0IMEM0044

PAMEM0IMEM0022
PAMEM0IMEM0021

PAMEM0IMEM0020
PAMEM0IMEM0019

PAMEM0IMEM0018
PAMEM0IMEM0017

PAMEM0IMEM0016
PAMEM0IMEM0015

PAMEM0IMEM0014
PAMEM0IMEM0013

PAMEM0IMEM0012
PAMEM0IMEM0011

PAMEM0IMEM0010
PAMEM0IMEM009

PAMEM0IMEM008
PAMEM0IMEM007

PAMEM0IMEM006
PAMEM0IMEM005

PAMEM0IMEM004
PAMEM0IMEM003

PAMEM0IMEM002
PAMEM0IMEM001

COMEM0IMEM0
PAMEM0IMEM1023

PAMEM0IMEM1024
PAMEM0IMEM1025

PAMEM0IMEM1026
PAMEM0IMEM1027

PAMEM0IMEM1028
PAMEM0IMEM1029

PAMEM0IMEM1030
PAMEM0IMEM1031

PAMEM0IMEM1032
PAMEM0IMEM1033

PAMEM0IMEM1034
PAMEM0IMEM1035

PAMEM0IMEM1036
PAMEM0IMEM1037

PAMEM0IMEM1038
PAMEM0IMEM1039

PAMEM0IMEM1040
PAMEM0IMEM1041

PAMEM0IMEM1042
PAMEM0IMEM1043

PAMEM0IMEM1044

PAMEM0IMEM1022
PAMEM0IMEM1021

PAMEM0IMEM1020
PAMEM0IMEM1019

PAMEM0IMEM1018
PAMEM0IMEM1017

PAMEM0IMEM1016
PAMEM0IMEM1015

PAMEM0IMEM1014
PAMEM0IMEM1013

PAMEM0IMEM1012
PAMEM0IMEM1011

PAMEM0IMEM1010
PAMEM0IMEM109

PAMEM0IMEM108
PAMEM0IMEM107

PAMEM0IMEM106
PAMEM0IMEM105

PAMEM0IMEM104
PAMEM0IMEM103

PAMEM0IMEM102
PAMEM0IMEM101

COMEM0IMEM1

PAOSC02

PAOSC04
PAOSC03

PAOSC01

COOSC

PAPOWER0H012

PAPOWER0H011

PAPOWER0H010

PAPOWER0H09

PAPOWER0H08

PAPOWER0H07

PAPOWER0H06

PAPOWER0H05

PAPOWER0H04

PAPOWER0H03

PAPOWER0H02

PAPOWER0H01

COPOWER0H

PAPSU0H04
PAPSU0H03

PAPSU0H02
PAPSU0H01

COPSU0H

PAPW01
PAPW02PAPW03

PAPW01B

PAPW02A
PAPW02B

PAPW03B
PAPW03A

PAPW01A

COPWPAPW0H201PAPW0H202

COPW0H2

PAPW0H401
PAPW0H402

COPW0H4

PAR101

PAR102
COR1

PAR201

PAR202
COR2

PAR301

PAR302
COR3

PAR402

PAR401

COR4
PAR502

PAR501

COR5
PAR602

PAR601

COR6
PAR702

PAR701

COR7
PAR802

PAR801

COR8
PAR902

PAR901

COR9
PAR1002

PAR1001

COR10
PAR1102

PAR1101

COR11
PAR1202

PAR1201

COR12
PAR1302

PAR1301

COR13
PAR1402

PAR1401

COR14
PAR1502

PAR1501

COR15
PAR1602

PAR1601

COR16
PAR1702

PAR1701

COR17
PAR1802

PAR1801

COR18
PAR1902

PAR1901

COR19

PAR2002
PAR2001

COR20 PAR2102
PAR2101

COR21

PAR2502
PAR2501

COR25PAR2902
PAR2901
COR29PAR3102
PAR3101
COR31

PAR3201
PAR3202

COR32PAR3301
PAR3302

COR33PAR3401
PAR3402

COR34PAR3501
PAR3502

COR35 PAR3601
PAR3602

COR36PAR3701
PAR3702

COR37 PAR3801
PAR3802

COR38

PAR3902
PAR3901

COR39

PARESET0SW01

PARESET0SW02
PARESET0SW04 PARESET0SW03

C
O
R
E
S
E
T
0
S
W

PASCU0A1
PASCU0A2

PASCU0A3
PASCU0A4

PASCU0A5
PASCU0A6

PASCU0A7
PASCU0A8

PASCU0A9
PASCU0A10

PASCU0A11

PASCU0B1
PASCU0B2

PASCU0B3
PASCU0B4

PASCU0B5
PASCU0B6

PASCU0B7
PASCU0B8

PASCU0B9
PASCU0B10

PASCU0B11

PASCU0C1
PASCU0C2

PASCU0C3
PASCU0C4

PASCU0C5
PASCU0C6

PASCU0C7
PASCU0C8

PASCU0C9
PASCU0C10

PASCU0C11

PASCU0D1
PASCU0D2

PASCU0D3
PASCU0D4

PASCU0D5
PASCU0D6

PASCU0D7
PASCU0D8

PASCU0D9
PASCU0D10

PASCU0D11

PASCU0E1
PASCU0E2

PASCU0E3
PASCU0E4

PASCU0E5
PASCU0E6

PASCU0E7
PASCU0E8

PASCU0E9
PASCU0E10

PASCU0E11

PASCU0F1
PASCU0F2

PASCU0F3
PASCU0F4

PASCU0F5
PASCU0F6

PASCU0F7
PASCU0F8

PASCU0F9
PASCU0F10

PASCU0F11

PASCU0G1
PASCU0G2

PASCU0G3
PASCU0G4

PASCU0G5
PASCU0G6

PASCU0G7
PASCU0G8

PASCU0G9
PASCU0G10

PASCU0G11

PASCU0H1
PASCU0H2

PASCU0H3
PASCU0H4

PASCU0H5
PASCU0H6

PASCU0H7
PASCU0H8

PASCU0H9
PASCU0H10

PASCU0H11

PASCU0J1
PASCU0J2

PASCU0J3
PASCU0J4

PASCU0J5
PASCU0J6

PASCU0J7
PASCU0J8

PASCU0J9
PASCU0J10

PASCU0J11

PASCU0K1
PASCU0K2

PASCU0K3
PASCU0K4

PASCU0K5
PASCU0K6

PASCU0K7
PASCU0K8

PASCU0K9
PASCU0K10

PASCU0K11

PASCU0L1
PASCU0L2

PASCU0L3
PASCU0L4

PASCU0L5
PASCU0L6

PASCU0L7
PASCU0L8

PASCU0L9
PASCU0L10

PASCU0L11

COSCU

PASCU0FPGA0H0A040
PASCU0FPGA0H0A039

PASCU0FPGA0H0A038
PASCU0FPGA0H0A037

PASCU0FPGA0H0A036
PASCU0FPGA0H0A035

PASCU0FPGA0H0A034
PASCU0FPGA0H0A033

PASCU0FPGA0H0A032
PASCU0FPGA0H0A031

PASCU0FPGA0H0A030
PASCU0FPGA0H0A029

PASCU0FPGA0H0A028
PASCU0FPGA0H0A027

PASCU0FPGA0H0A026PASCU0FPGA0H0A025

PASCU0FPGA0H0A024
PASCU0FPGA0H0A023

PASCU0FPGA0H0A022
PASCU0FPGA0H0A021

PASCU0FPGA0H0A020
PASCU0FPGA0H0A019

PASCU0FPGA0H0A018PASCU0FPGA0H0A017

PASCU0FPGA0H0A016
PASCU0FPGA0H0A015

PASCU0FPGA0H0A014
PASCU0FPGA0H0A013

PASCU0FPGA0H0A012
PASCU0FPGA0H0A011

PASCU0FPGA0H0A010PASCU0FPGA0H0A09

PASCU0FPGA0H0A08
PASCU0FPGA0H0A07

PASCU0FPGA0H0A06
PASCU0FPGA0H0A05

PASCU0FPGA0H0A04
PASCU0FPGA0H0A03

PASCU0FPGA0H0A02PASCU0FPGA0H0A01

COSCU0FPGA0H0A

PASCU0FPGA0H0B040
PASCU0FPGA0H0B039

PASCU0FPGA0H0B038
PASCU0FPGA0H0B037

PASCU0FPGA0H0B036
PASCU0FPGA0H0B035

PASCU0FPGA0H0B034
PASCU0FPGA0H0B033

PASCU0FPGA0H0B032
PASCU0FPGA0H0B031

PASCU0FPGA0H0B030
PASCU0FPGA0H0B029

PASCU0FPGA0H0B028
PASCU0FPGA0H0B027

PASCU0FPGA0H0B026PASCU0FPGA0H0B025

PASCU0FPGA0H0B024
PASCU0FPGA0H0B023

PASCU0FPGA0H0B022
PASCU0FPGA0H0B021

PASCU0FPGA0H0B020
PASCU0FPGA0H0B019

PASCU0FPGA0H0B018PASCU0FPGA0H0B017

PASCU0FPGA0H0B016
PASCU0FPGA0H0B015

PASCU0FPGA0H0B014
PASCU0FPGA0H0B013

PASCU0FPGA0H0B012
PASCU0FPGA0H0B011

PASCU0FPGA0H0B010PASCU0FPGA0H0B09

PASCU0FPGA0H0B08
PASCU0FPGA0H0B07

PASCU0FPGA0H0B06
PASCU0FPGA0H0B05

PASCU0FPGA0H0B04
PASCU0FPGA0H0B03

PASCU0FPGA0H0B02PASCU0FPGA0H0B01 COSCU0FPGA0H0B
PASCU0FPGA0H0C01

PASCU0FPGA0H0C02

C
O
S
C
U
0
F
P
G
A
0
H
0
C

PASCU0H08

PASCU0H07

PASCU0H06

PASCU0H05

PASCU0H04

PASCU0H03

PASCU0H02

PASCU0H01

COSCU0H

PASCU0LED0H032

PASCU0LED0H031

PASCU0LED0H030

PASCU0LED0H029

PASCU0LED0H028

PASCU0LED0H027

PASCU0LED0H026

PASCU0LED0H025

PASCU0LED0H024

PASCU0LED0H023

PASCU0LED0H022

PASCU0LED0H021

PASCU0LED0H020

PASCU0LED0H019

PASCU0LED0H018

PASCU0LED0H017

PASCU0LED0H016

PASCU0LED0H015

PASCU0LED0H014

PASCU0LED0H013

PASCU0LED0H012

PASCU0LED0H011

PASCU0LED0H010

PASCU0LED0H09

PASCU0LED0H08

PASCU0LED0H07

PASCU0LED0H06

PASCU0LED0H05

PASCU0LED0H04

PASCU0LED0H03

PASCU0LED0H02

PASCU0LED0H01

COSCU0LED0H

PASCU0SD0H08
PASCU0SD0H07

PASCU0SD0H06
PASCU0SD0H05

PASCU0SD0H04
PASCU0SD0H03

PASCU0SD0H02
PASCU0SD0H01

COSCU0SD0H

PASCU0SW0H01

PASCU0SW0H02

PASCU0SW0H03

PASCU0SW0H04

PASCU0SW0H05

PASCU0SW0H06

PASCU0SW0H07

PASCU0SW0H08

PASCU0SW0H09

PASCU0SW0H010

PASCU0SW0H011

PASCU0SW0H012

PASCU0SW0H013

PASCU0SW0H014

PASCU0SW0H015

PASCU0SW0H016

C
O
S
C
U
0
S
W
0
H

PASCU0USB0H08
PASCU0USB0H07

PASCU0USB0H06
PASCU0USB0H05

PASCU0USB0H04
PASCU0USB0H03

PASCU0USB0H02
PASCU0USB0H01

C
O
S
C
U
0
U
S
B
0
H

PASD1010

PASD1011

PASD108
PASD107

PASD106

PASD105

PASD1013
PASD1012
PASD109

PASD101

PASD104

PASD103

PASD102

COSD1

PASP0CON011

PASP0CON010 PASP0CON01
PASP0CON06

PASP0CON02
PASP0CON07

PASP0CON03
PASP0CON08

PASP0CON04
PASP0CON09

PASP0CON05

COSP0CON

PASP0H01
PASP0H02

PASP0H03
PASP0H04

PASP0H05
PASP0H06

PASP0H07
PASP0H08

PASP0H09
PASP0H010

PASP0H011
PASP0H012 PASP0H013
PASP0H014

PASP0H015
PASP0H016

COSP0H

PASPD09PASPD010PASPD011PASPD012PASPD013PASPD014PASPD015PASPD016

PASPD08PASPD07PASPD06PASPD05PASPD04PASPD03PASPD02PASPD01
COSPD

PASW101

PASW102
PASW104PASW103 COSW1

PASW201

PASW202
PASW204PASW203 COSW2

PASW301

PASW302
PASW304

PASW303 COSW3

PASW401

PASW402
PASW404

PASW403 COSW4

PASW501

PASW502
PASW504

PASW503 COSW5

PASW601

PASW602
PASW604

PASW603 COSW6

PASW701

PASW702
PASW704

PASW703 COSW7

PASW801

PASW802
PASW804PASW803 COSW8

PATSW05

PATSW06

PATSW04
PATSW0

COTSW

PAUSB0D01

PAUSB0D03
PAUSB0D02

PAUSB0D04

PAUSB0D05

COUSB0D

PAVR201
PAVR202

PAVR203

COVR2

PAVR401
PAVR402

PAVR403

COVR4

PAXTAL01
PAXTAL02

COXTAL

PAC801 PAC901 PAC1001

PAC1202 PAC1302

PAC2001 PAC2101

PAC2201
PAC2301

PAC2401

PAC2501

PAC2601

PAE1101

PAFPGA0G7

PAFPGA0H9
PAFPGA0H11

PAFPGA0J8
PAFPGA0J10

PAFPGA0K9
PAFPGA0K11

PAFPGA0L8
PAFPGA0L10

PAFPGA0M7
PAFPGA0M12

PALED401

PAPOWER0H02
PAPOWER0H04

PAR2902

PAVR402

PAC502

PAC602

PAC702

PAC2701
PAC2801

PAC2901
PAC3001

PAC3101

PAC3201 PAC3301

PAC3401
PAC3501

PAC3601
PAC3701

PAC3801
PAC3901

PAC4001
PAC4101

PAC4201

PAC4301
PAC4401

PAC4501

PAC4601 PAC4701 PAC4801 PAC4901 PAC5001
PAC5101PAC5201PAC5301

PAC5401
PAC5501PAC5601PAC5701

PAC5801

PAC5901 PAC6001 PAC6101

PAC6201

PAC6301PAC6401PAC6501PAC6601

PAE402

PAE901

PAFPGA0B1
PAFPGA0B5

PAFPGA0B10
PAFPGA0B15

PAFPGA0B17

PAFPGA0D7
PAFPGA0D13

PAFPGA0E2
PAFPGA0E5

PAFPGA0E9
PAFPGA0E10

PAFPGA0E14
PAFPGA0E17

PAFPGA0G4
PAFPGA0G10

PAFPGA0G15

PAFPGA0J2
PAFPGA0J5

PAFPGA0J12
PAFPGA0J14

PAFPGA0J17

PAFPGA0K7

PAFPGA0M4
PAFPGA0M9

PAFPGA0M15

PAFPGA0P5
PAFPGA0P9

PAFPGA0P10
PAFPGA0P14

PAFPGA0R2
PAFPGA0R6

PAFPGA0R12
PAFPGA0R17

PAFPGA0U4
PAFPGA0U9

PAFPGA0U14

PAMEM0DMEM011 PAMEM0DMEM033

PAMEM0IMEM0011 PAMEM0IMEM0033

PAMEM0IMEM1011 PAMEM0IMEM1033

PAOSC01

PAOSC04

PAPOWER0H06
PAPOWER0H08

PAPOWER0H010
PAPOWER0H012

PAR102

PAR202

PAR302

PAR2001

PAR2101

PAR2501

PARESET0SW03

PARESET0SW04

PASCU0D5
PASCU0D7

PASCU0F8

PASCU0G4
PASCU0G8

PASCU0H7

PASCU0K8
PASCU0K9

PASCU0L4
PASCU0L10

PASD104

PASD1011

PAVR202

PAPOWER0H011

PAPSU0H03

PAPW0H201

PAPW0H401

PASCU0B3

PASCU0H02

PASCU0C3

PASCU0H01

PAFPGA0D9

PAFPGA0R10

PAOSC03

PAFPGA0N4

PAMEM0DMEM05

PAFPGA0N3

PAMEM0DMEM04

PAFPGA0P4

PAMEM0DMEM03

PAFPGA0P3

PAMEM0DMEM02

PAFPGA0L6

PAMEM0DMEM01

PAFPGA0M5

PAMEM0DMEM044

PAFPGA0U2

PAMEM0DMEM043

PAFPGA0U1

PAMEM0DMEM042

PAFPGA0T2

PAMEM0DMEM028

PAFPGA0T1

PAMEM0DMEM027

PAFPGA0P2

PAMEM0DMEM026

PAFPGA0P1

PAMEM0DMEM025

PAFPGA0N2

PAMEM0DMEM024

PAFPGA0N1

PAMEM0DMEM023

PAFPGA0M3

PAMEM0DMEM022

PAFPGA0M1

PAMEM0DMEM021

PAFPGA0L2

PAMEM0DMEM020

PAFPGA0L1

PAMEM0DMEM019

PAFPGA0K2

PAMEM0DMEM018

PAFPGA0K1

PAMEM0DMEM07

PAFPGA0L4

PAMEM0DMEM08

PAFPGA0L3

PAMEM0DMEM09

PAFPGA0J3

PAMEM0DMEM010

PAFPGA0J1

PAMEM0DMEM013

PAFPGA0H2

PAMEM0DMEM014

PAFPGA0H1

PAMEM0DMEM015

PAFPGA0K4

PAMEM0DMEM016

PAFPGA0K3

PAMEM0DMEM029

PAFPGA0L5

PAMEM0DMEM030

PAFPGA0K5

PAMEM0DMEM031

PAFPGA0H4

PAMEM0DMEM032

PAFPGA0H3

PAMEM0DMEM035

PAFPGA0L7

PAMEM0DMEM036

PAFPGA0K6

PAMEM0DMEM037

PAFPGA0G3

PAMEM0DMEM038

PAFPGA0J7

PAMEM0DMEM06

PAFPGA0J6

PAMEM0DMEM039
PAMEM0DMEM040

PAFPGA0G1

PAMEM0DMEM017

PAFPGA0B2

PASCU0FPGA0H0A02

PAFPGA0A2

PASCU0FPGA0H0A04

PAFPGA0D6

PASCU0FPGA0H0A06

PAFPGA0C6

PASCU0FPGA0H0A08

PAFPGA0B3

PASCU0FPGA0H0A010

PAFPGA0A3

PASCU0FPGA0H0A012

PAFPGA0B4

PASCU0FPGA0H0A014

PAFPGA0A4

PASCU0FPGA0H0A016
PAFPGA0C5

PASCU0FPGA0H0A018
PAFPGA0A5

PASCU0FPGA0H0A020

PAFPGA0B6

PASCU0FPGA0H0A022

PAFPGA0C7

PASCU0FPGA0H0A024

PAFPGA0A7

PASCU0FPGA0H0A026

PAFPGA0D8

PASCU0FPGA0H0A028

PAFPGA0C8

PASCU0FPGA0H0A030

PAFPGA0B8

PASCU0FPGA0H0A032

PAFPGA0A8

PASCU0FPGA0H0A034

PAFPGA0G9

PASCU0FPGA0H0A036

PAFPGA0B11

PASCU0FPGA0H0A038

PAFPGA0U15

PASCU0FPGA0H0B02

PAFPGA0V15

PASCU0FPGA0H0B04

PAFPGA0M11

PASCU0FPGA0H0B06

PAFPGA0N11

PASCU0FPGA0H0B08
PAFPGA0R11

PASCU0FPGA0H0B010
PAFPGA0T12

PASCU0FPGA0H0B012

PAFPGA0V12

PASCU0FPGA0H0B014

PAFPGA0N10

PASCU0FPGA0H0B016

PAFPGA0P11

PASCU0FPGA0H0B018

PAFPGA0M10

PASCU0FPGA0H0B020

PAFPGA0N9

PASCU0FPGA0H0B022

PAFPGA0U11

PASCU0FPGA0H0B024

PAFPGA0V11

PASCU0FPGA0H0B026

PAFPGA0M8

PASCU0FPGA0H0B028

PAFPGA0N8

PASCU0FPGA0H0B030

PAFPGA0U8

PASCU0FPGA0H0B032

PASCU0FPGA0H0B036

PAFPGA0A11

PASCU0FPGA0H0A040

PAFPGA0N7

PASCU0FPGA0H0C02

PAFPGA0U7

PASCU0FPGA0H0B038

PAFPGA0V7

PASCU0FPGA0H0B040

PAFPGA0P8

PASCU0FPGA0H0B034

PAFPGA0D4

PAFPGA0H0A01

PAFPGA0C4

PAFPGA0H0A02

PAFPGA0A6

PAFPGA0H0A03

PAFPGA0C9

PAFPGA0H0A04

PAFPGA0B9

PAFPGA0H0A05

PAFPGA0A9

PAFPGA0H0A06

PAFPGA0D11

PAFPGA0H0A07

PAFPGA0C11

PAFPGA0H0A08

PAFPGA0C10

PAFPGA0H0A09

PAFPGA0A10

PAFPGA0H0A010

PAFPGA0F9

PAFPGA0H0A011

PAFPGA0B12

PAFPGA0H0A012

PAFPGA0A12

PAFPGA0H0A013

PAFPGA0C13

PAFPGA0H0A014

PAFPGA0A13

PAFPGA0H0A015

PAFPGA0B14

PAFPGA0H0A016

PAFPGA0A14

PAFPGA0H0A017

PAFPGA0F13

PAFPGA0H0A018

PAFPGA0E13

PAFPGA0H0A019

PAFPGA0C15

PAFPGA0H0A020

PAFPGA0A15

PAFPGA0H0A021

PAFPGA0D14

PAFPGA0H0A022

PAFPGA0C14

PAFPGA0H0A023

PAFPGA0B16

PAFPGA0H0A024

PAFPGA0A16

PAFPGA0H0A025

PAFPGA0H0A026

PAFPGA0H0A027

PAFPGA0H0A028

PAFPGA0R15

PAFPGA0H0A029

PAFPGA0T15

PAFPGA0H0A030

PAFPGA0U16

PAFPGA0H0A031

PAFPGA0V16

PAFPGA0H0A032

PAFPGA0R13

PAFPGA0H0A033

PAFPGA0T13

PAFPGA0H0A034

PAFPGA0T14

PAFPGA0H0A035

PAFPGA0V14

PAFPGA0H0A036

PAFPGA0N12

PAFPGA0H0A037

PAFPGA0P12

PAFPGA0H0A038

PAFPGA0U13

PAFPGA0H0A039

PAFPGA0V13

PAFPGA0H0A040

PAFPGA0T11

PAFPGA0H0B01

PAFPGA0T10

PAFPGA0H0B02

PAFPGA0U10

PAFPGA0H0B03

PAFPGA0V10

PAFPGA0H0B04

PAFPGA0R8

PAFPGA0H0B05

PAFPGA0T8

PAFPGA0H0B06

PAFPGA0T9

PAFPGA0H0B07

PAFPGA0V9

PAFPGA0H0B08

PAFPGA0V8

PAFPGA0H0B09

PAFPGA0V6

PAFPGA0H0B010

PAFPGA0R7

PAFPGA0H0B011

PAFPGA0T7

PAFPGA0H0B012

PAFPGA0N6

PAFPGA0H0B013

PAFPGA0P7

PAFPGA0H0B014

PAFPGA0R5

PAFPGA0H0B015

PAFPGA0T5

PAFPGA0H0B016

PAFPGA0U5

PAFPGA0H0B017

PAFPGA0V5

PAFPGA0H0B018

PAFPGA0R3

PAFPGA0H0B019

PAFPGA0T3

PAFPGA0H0B020

PAFPGA0T4

PAFPGA0H0B021

PAFPGA0V4

PAFPGA0H0B022

PAFPGA0N5

PAFPGA0H0B023

PAFPGA0V3

PAFPGA0H0B025

PAFPGA0H0B026

PAFPGA0F2

PAFPGA0H0B027

PAFPGA0F1

PAFPGA0H0B028

PAFPGA0H6

PAFPGA0H0B029

PAFPGA0H5

PAFPGA0H0B030

PAFPGA0E3

PAFPGA0H0B031

PAFPGA0E1

PAFPGA0H0B032

PAFPGA0F4

PAFPGA0H0B033

PAFPGA0F3

PAFPGA0H0B034

PAFPGA0D2

PAFPGA0H0B035

PAFPGA0D1

PAFPGA0H0B036

PAFPGA0H7

PAFPGA0H0B037

PAFPGA0G6

PAFPGA0H0B038

PAFPGA0E4

PAFPGA0H0B039

PAFPGA0D3

PAFPGA0H0B040

PAFPGA0F6

PAFPGA0H0C01

PAFPGA0F5

PAFPGA0H0C02

PAFPGA0C2

PAFPGA0H0C03

PAFPGA0C1

PAFPGA0N14

PAMEM0IMEM0039
PAMEM0IMEM0040

PAMEM0IMEM1039
PAMEM0IMEM1040

PAFPGA0F15

PAMEM0IMEM005
PAMEM0IMEM105

PAFPGA0F16

PAMEM0IMEM004
PAMEM0IMEM104

PAFPGA0C17

PAMEM0IMEM003
PAMEM0IMEM103

PAFPGA0C18

PAMEM0IMEM002
PAMEM0IMEM102

PAFPGA0F14

PAMEM0IMEM001
PAMEM0IMEM101

PAFPGA0G14

PAMEM0IMEM0044
PAMEM0IMEM1044

PAFPGA0D17

PAMEM0IMEM0043
PAMEM0IMEM1043

PAFPGA0D18

PAMEM0IMEM0042
PAMEM0IMEM1042

PAFPGA0H12

PAMEM0IMEM0028
PAMEM0IMEM1028

PAFPGA0G13

PAMEM0IMEM0027
PAMEM0IMEM1027

PAFPGA0E16

PAMEM0IMEM0026
PAMEM0IMEM1026

PAFPGA0E18

PAMEM0IMEM0025
PAMEM0IMEM1025

PAFPGA0K12

PAMEM0IMEM0024
PAMEM0IMEM1024

PAFPGA0K13

PAMEM0IMEM0023
PAMEM0IMEM1023

PAFPGA0F17

PAMEM0IMEM0022
PAMEM0IMEM1022

PAFPGA0F18

PAMEM0IMEM0021
PAMEM0IMEM1021

PAFPGA0H13

PAMEM0IMEM0020
PAMEM0IMEM1020

PAFPGA0H14

PAMEM0IMEM0019
PAMEM0IMEM1019

PAFPGA0H15

PAMEM0IMEM0018
PAMEM0IMEM1018

PAC401
PAC501

PAC601

PAC701

PAC802 PAC902 PAC1002

PAC1101 PAC1201 PAC1301

PAC1402
PAC1501

PAC1602
PAC1702

PAC1802 PAC1902

PAC2002 PAC2102
PAC2202

PAC2302
PAC2402

PAC2502

PAC2602

PAC2702
PAC2802

PAC2902
PAC3002

PAC3102

PAC3202 PAC3302

PAC3402
PAC3502

PAC3602
PAC3702

PAC3802
PAC3902

PAC4002
PAC4102

PAC4202

PAC4302
PAC4402

PAC4502

PAC4602 PAC4702 PAC4802 PAC4902 PAC5002
PAC5102PAC5202PAC5302

PAC5402
PAC5502PAC5602PAC5702

PAC5802

PAC5902 PAC6002 PAC6102

PAC6202

PAC6302PAC6402PAC6502PAC6602

PAE301

PAE502PAE802PAE902PAE1002PAE1102

PAFPGA0A1
PAFPGA0A18

PAFPGA0B7
PAFPGA0B13

PAFPGA0C3
PAFPGA0C16

PAFPGA0D5
PAFPGA0D10

PAFPGA0E15

PAFPGA0G2
PAFPGA0G5

PAFPGA0G12
PAFPGA0G17

PAFPGA0H8
PAFPGA0H10

PAFPGA0J4
PAFPGA0J9

PAFPGA0J11
PAFPGA0J15

PAFPGA0K8
PAFPGA0K10

PAFPGA0L9
PAFPGA0L11

PAFPGA0M2
PAFPGA0M6

PAFPGA0M17

PAFPGA0N13

PAFPGA0P13

PAFPGA0R1
PAFPGA0R4

PAFPGA0R9
PAFPGA0R14

PAFPGA0R16
PAFPGA0R18

PAFPGA0T16

PAFPGA0U6
PAFPGA0U12

PAFPGA0V1
PAFPGA0V18

PAFPGA0H0B024

PAFPGA0H0C04

PAJ105

PALED202

PALED402

PALED502
PALED602

PALED702
PALED802

PALED902
PALED1002

PALED1102
PALED1202

PALED1302
PALED1402

PALED1502
PALED1602

PALED1702
PALED1802

PALED1902
PALED2002

PALED2102
PALED2202

PAMEM0DMEM012

PAMEM0DMEM034
PAMEM0DMEM041

PAMEM0IMEM0012

PAMEM0IMEM0034
PAMEM0IMEM0041

PAMEM0IMEM1012

PAMEM0IMEM1034
PAMEM0IMEM1041

PAOSC02

PAPOWER0H01
PAPOWER0H03

PAPOWER0H05
PAPOWER0H07

PAPOWER0H09

PAPW02PAPW02A
PAPW02B

PAR3101

PAR3302

PAR3402

PAR3602

PAR3802PAR3902

PASCU0C7

PASCU0D4

PASCU0F9

PASCU0G3
PASCU0G9

PASCU0H6

PASCU0K4
PASCU0K7

PASCU0K10

PASCU0L7

PASCU0USB0H08

PASP0CON05

PASP0CON010

PASP0CON011

PASP0H01

PASP0H03

PASP0H013

PASP0H015

PASPD015

PASW103

PASW104

PASW203

PASW204

PASW303

PASW304

PASW403

PASW404

PASW503

PASW504

PASW603

PASW604

PASW703

PASW704

PASW803

PASW804

PAUSB0D02PAVR201

PASCU0E4

PASCU0SW0H01

PASCU0F1

PASCU0SW0H03

PASCU0F2

PASCU0SW0H05

PASCU0F3

PASCU0SW0H07

PASCU0F4

PASCU0SW0H09

PASCU0G1

PASCU0SW0H011

PASCU0G2

PASCU0SW0H013

PASCU0K1

PASCU0SW0H015

PASCU0H1

PASCU0FPGA0H0A01

PASCU0J1

PASCU0FPGA0H0A03

PASCU0H2

PASCU0FPGA0H0A05

PASCU0J2

PASCU0FPGA0H0A07

PASCU0K2

PASCU0FPGA0H0A09

PASCU0L2

PASCU0FPGA0H0A011

PASCU0G10

PASCU0FPGA0H0A013

PASCU0G11

PASCU0FPGA0H0A015

PASCU0D10

PASCU0FPGA0H0A017

PASCU0D11

PASCU0FPGA0H0A019

PASCU0C10

PASCU0FPGA0H0A021

PASCU0C11

PASCU0FPGA0H0A023

PASCU0E9

PASCU0FPGA0H0A025

PASCU0E10

PASCU0FPGA0H0A027

PASCU0F10

PASCU0FPGA0H0A029

PASCU0E11

PASCU0FPGA0H0A031

PASCU0A9

PASCU0FPGA0H0A033
PASCU0B9

PASCU0FPGA0H0A035

PASCU0C9

PASCU0FPGA0H0A037

PASCU0C2

PASCU0FPGA0H0B01

PASCU0C1

PASCU0FPGA0H0B03

PASCU0D2

PASCU0FPGA0H0B05

PASCU0D1

PASCU0FPGA0H0B07

PASCU0E3

PASCU0FPGA0H0B09

PASCU0E2

PASCU0FPGA0H0B011

PASCU0E1

PASCU0FPGA0H0B013

PASCU0H4

PASCU0FPGA0H0B015

PASCU0H5

PASCU0FPGA0H0B017

PASCU0J5

PASCU0FPGA0H0B019

PASCU0J6

PASCU0FPGA0H0B021

PASCU0K5

PASCU0FPGA0H0B023

PASCU0J4

PASCU0FPGA0H0B025

PASCU0K3

PASCU0FPGA0H0B027
PASCU0L3

PASCU0FPGA0H0B029

PASCU0B1

PASCU0FPGA0H0B031

PASCU0A4

PASCU0FPGA0H0B035

PASCU0D9

PASCU0FPGA0H0A039

PASCU0J3

PASCU0FPGA0H0C01

PASCU0C4

PASCU0FPGA0H0B037

PASCU0H3

PASCU0FPGA0H0B039

PASCU0B4

PASCU0FPGA0H0B033

PASCU0L1

PASCU0LED0H01

PASCU0L5

PASCU0LED0H03

PASCU0L6

PASCU0LED0H05

PASCU0D3

PASCU0LED0H07

PASCU0L11

PASCU0LED0H09

PASCU0J9

PASCU0LED0H011

PASCU0J10

PASCU0LED0H013

PASCU0J11

PASCU0LED0H015

PASCU0H9

PASCU0LED0H017

PASCU0H10

PASCU0LED0H019

PASCU0H11

PASCU0LED0H021

PASCU0H8

PASCU0LED0H023

PASCU0D6

PASCU0LED0H025

PASCU0A5

PASCU0LED0H027

PASCU0B5

PASCU0LED0H029

PASCU0C5

PASCU0LED0H031

PASCU0B2

PASCU0SD0H03

PASCU0A3

PASCU0SD0H01

PASCU0A1

PASCU0SD0H07

PASCU0A2

PASCU0SD0H05

PASCU0A10

PASCU0USB0H03

PASCU0A11

PASCU0USB0H05
PASCU0A8

PASCU0USB0H07
PASCU0A7

PASCU0USB0H01

PASCU0E8

PASCU0H06

PASCU0D8

PASCU0H07

PASCU0C8

PASCU0H08

PASCU0K11

PASCU0H05

PAC1502

PASCU0L9

PAXTAL01

PAC1401

PASCU0L8

PAXTAL02

PAFPGA0U3

PAR301

PAFPGA0H16

PAMEM0IMEM007

PAFPGA0G16

PAMEM0IMEM008

PAFPGA0G18

PAMEM0IMEM009

PAFPGA0J13

PAMEM0IMEM0010

PAFPGA0K14

PAMEM0IMEM0013

PAFPGA0L12

PAMEM0IMEM0014

PAFPGA0L13

PAMEM0IMEM0015

PAFPGA0K15

PAMEM0IMEM0016

PAFPGA0K16

PAMEM0IMEM0029

PAFPGA0L15

PAMEM0IMEM0030

PAFPGA0L16

PAMEM0IMEM0031

PAFPGA0H17

PAMEM0IMEM0032

PAFPGA0H18

PAMEM0IMEM0035

PAFPGA0J16

PAMEM0IMEM0036

PAFPGA0J18

PAMEM0IMEM0037

PAFPGA0K17

PAMEM0IMEM0038

PAFPGA0L14

PAMEM0IMEM006

PAFPGA0P15

PAMEM0IMEM0017

PAFPGA0K18

PAMEM0IMEM107

PAFPGA0L17

PAMEM0IMEM108

PAFPGA0L18

PAMEM0IMEM109

PAFPGA0M16

PAMEM0IMEM1010

PAFPGA0M18

PAMEM0IMEM1013

PAFPGA0N17

PAMEM0IMEM1014

PAFPGA0N18

PAMEM0IMEM1015

PAFPGA0P17

PAMEM0IMEM1016

PAFPGA0P18

PAMEM0IMEM1029

PAFPGA0N15

PAMEM0IMEM1030

PAFPGA0N16

PAMEM0IMEM1031

PAFPGA0T17

PAMEM0IMEM1032

PAFPGA0T18

PAMEM0IMEM1035

PAFPGA0U17

PAMEM0IMEM1036

PAFPGA0U18

PAMEM0IMEM1037

PAFPGA0M14

PAMEM0IMEM1038

PAFPGA0M13

PAMEM0IMEM106

PAFPGA0P16

PAMEM0IMEM1017

PAFPGA0A17

PAJTAG0H01

PAFPGA0D15

PAJTAG0H03

PAFPGA0D16

PAJTAG0H02

PAFPGA0B18

PAJTAG0H04

PAR401

PASCU0LED0H02

PAR501

PASCU0LED0H04

PAR601

PASCU0LED0H06

PAR701

PASCU0LED0H08

PAR801

PASCU0LED0H010

PAR901

PASCU0LED0H012

PAR1001

PASCU0LED0H014

PAR1101

PASCU0LED0H016

PAR1201

PASCU0LED0H018

PAR1301

PASCU0LED0H020

PAR1401

PASCU0LED0H022

PAR1501

PASCU0LED0H024

PAR1601

PASCU0LED0H026

PAR1701

PASCU0LED0H028

PAR1801

PASCU0LED0H030

PAR1901

PASCU0LED0H032
PAC402

PAE801

PAPW0H202
PAVR203

PAC1102

PAE1001

PAPW0H402
PAVR403

PAC1601

PASCU0F11

PAC1701

PASCU0B10

PAC1801

PASCU0B8

PAC1901

PASCU0B11

PAE101

PASPD01

PAE102PASPD03

PAE201

PASPD04

PAE202

PASPD05

PAE302

PASPD06

PAE401

PASPD02

PAE501

PASPD016

PAFPGA0C12

PAFPGA0D12

PAFPGA0E6
PAFPGA0E7

PAFPGA0E8
PAFPGA0E11

PAFPGA0E12
PAFPGA0F7

PAFPGA0F8
PAFPGA0F10

PAFPGA0F11
PAFPGA0F12

PAFPGA0G8
PAFPGA0G11

PAFPGA0P6

PAFPGA0T6

PAFPGA0V2

PAR101

PAFPGA0V17

PAR201

PAJ101

PAL201

PAUSB0D05

PAJ102

PAL103

PAUSB0D04

PAJ103

PAL102

PAUSB0D03

PAJ104

PAJ10SH

PALED201
PAR2502

PALED501

PAR402

PALED601

PAR502

PALED701

PAR602

PALED801

PAR702

PALED901

PAR802

PALED1001

PAR902

PALED1101

PAR1002

PALED1201

PAR1102

PALED1301

PAR1202

PALED1401

PAR1302

PALED1501

PAR1402

PALED1601

PAR1502

PALED1701

PAR1602

PALED1801

PAR1702

PALED1901

PAR1802

PALED2001

PAR1902

PALED2101

PAR2002

PALED2201

PAR2102

PAPSU0H02

PATSW04

PATSW06

PAPSU0H04

PATSW05

PAR2901

PAR3102

PAVR401

PAR3202
PASD101

PAR3301

PASD103

PAR3401

PASD106

PAR3502

PASD107

PAR3601

PASD108

PAR3702

PASD102

PAR3801
PASD1010

PAR3901

PASD1012

PASP0CON01

PASP0H016

PASP0CON02

PASPD014

PASP0CON03

PASPD013

PASP0CON04

PASP0H04

PASP0CON06

PASP0H014

PASP0CON07

PASPD07

PASP0CON08

PASPD08

PASP0CON09

PASP0H02

PASP0H06

PASPD09

PASP0H08

PASPD012

PASP0H010

PASPD010

PASP0H012

PASPD011

PAUSB0D01

PARESET0SW01

PARESET0SW02

PASCU0K6

PASCU0SD0H04

PASD105

PAR3201

PASCU0SD0H02

PAR3701

PASCU0SD0H08

PAR3501

PASCU0SD0H06

PASCU0SW0H02

PASW101

PASW102

PASCU0SW0H04

PASW201

PASW202

PASCU0SW0H06

PASW301

PASW302

PASCU0SW0H08

PASW401

PASW402

PASCU0SW0H010PASW501

PASW502

PASCU0SW0H012

PASW601

PASW602

PASCU0SW0H014

PASW701

PASW702

PASCU0SW0H016

PASW801

PASW802

PAPSU0H01
PAPW01PAPW01A

PAPW01B

PAPW03
PAPW03APAPW03B

PASCU0C6

PASP0H05

PASCU0B6

PASP0H09

PASCU0A6

PASP0H07

PASCU0B7

PASP0H011

PASCU0J8

PASCU0H04

PASCU0J7

PASCU0H03

PAL104

PASCU0USB0H04

PAL101

PASCU0USB0H06
PAL202

PASCU0USB0H02

APPENDIX

C

CASE SCHEMATICS

185

Computer Project Barricelli Performance Group

Figure C.1: Case design

Figure C.2: The front of the case

Figure C.3: The back of the case

186

Computer Project Barricelli Performance Group

Figure C.4: The keyboard tray

Figure C.5: Side panel with the names of the team members

Figure C.6: The side panel with the picture of Nils Aall Barricelli

187

Computer Project Barricelli Performance Group

Figure C.7: The support holding the buttons of the keyboard in place

Figure C.8: The plastic edge that stop the keyboard from sliding all the way
out

188

Computer Project Barricelli Performance Group

Figure C.9: The blue part of the NTNU logo in front of the case

Figure C.10: The blue part of the NTNU logo in front of the case

Figure C.11: An early sketch of the case

189

APPENDIX

D

GALAPAGOS ASSEMBLER
LISTING

190

Computer Project Barricelli Performance Group

galapagos–assembler/galapagos/ init .py

1 import sys
2 import glob
3 from assembler import (assemble , a s c i i b i n a r y t o r e a l b i n a r y ,
4 a s c i i b i n a r y t o vhd l c o d e)
5
6
7 def main () :
8
9 i f l en (sys . argv) == 1 :

10 pr in t ”USAGE: galapagos−as [−d] source . gas [source2 . gas . . .] ”
11 pr in t ”use −−a s c i i to get output a s c i i s t r i n g s o f 0 s and 1 s ” \
12 ” ins t ead o f r e a l binary ”
13 pr in t ”use −−vhdl to generate fake VHDL ram fo r t e s t i n g purposes ”
14 return
15
16 debug = ’−d ’ in sys . argv
17
18 paths = f i l t e r (lambda x : x [0] != ’− ’ ,
19 [item f o r s u b l i s t in map(glob . glob , sys . argv [1 :])
20 f o r item in s u b l i s t])
21
22 f o r path in paths :
23 with open (path , ’ r ’) as f :
24 assembly = [l i n e f o r l i n e in f]
25 assembled = assemble (assembly)
26
27 i f not assembled :
28 return
29
30 address = 1
31 a s c i i b i n a r y = []
32 f o r l i n e in assembled :
33 a s c i i b i n a r y . append (l i n e . toBinary ())
34 i f debug :
35 pr in t ’ Address : %s ’ % address
36 pr in t ’ t ext : ’ + s t r (l i n e)
37 pr in t l i n e . toBinary (debug=debug)
38 pr in t
39 address += 1
40
41 a s c i i b i n a r y = ’ ’ . j o i n (a s c i i b i n a r y)
42
43 asc i i mode = ’−−a s c i i ’ in sys . argv
44 vhdl mode = ’−−vhdl ’ in sys . argv
45
46 i f vhdl mode :
47 a s c i i b i n a r y t o vhd l c o d e (a s c i i b i n a r y)
48
49 with open (path + ’ . out ’ , ’w ’) as f :
50 f . wr i t e (
51 a s c i i b i n a r y
52 i f a sc i i mode e l s e
53 a s c i i b i n a r y t o r e a l b i n a r y (a s c i i b i n a r y)
54)
55
56
57 i f name == ’ ma in ’ :
58 main ()

galapagos–assembler/galapagos/assembler.py

1 from scanner import scanner
2 from base import Cond
3 import i n s t r u c t i o n s
4 import base
5 import i n spe c t
6 import re
7
8
9 inst ruct ion map = {}

10
11 f o r name , obj in in spec t . getmembers (i n s t ru c t i on s , i n spe c t . i s c l a s s) :
12 i f base . I n s t r u c t i on in in spe c t . getmro (obj) :
13 inst ruct ion map [name] = obj
14
15
16 def assemble (l i n e s) :
17
18 s t r i p p e d l i n e s = str ip comments (map(s t r . s t r i p , l i n e s))
19 t o k e n i z e d l i n e s = [(l ine number , scanner . scan (l i n e)) f o r
20 l ine number , l i n e in s t r i p p e d l i n e s]
21
22 # nop i n s e r t i o n pass
23 h o t r e g i s t e r = None
24 f o r i , l i n e t u p l e in enumerate (t o k e n i z e d l i n e s) :
25 l ine number , l i n e = l i n e t u p l e
26 tokens , r e s t = l i n e
27 token type , value = tokens [0]
28 i f token type == ’ operator ’ :
29 i f value == ’ ld ’ :
30 h o t r e g i s t e r = tokens [1] [1]
31 e l s e :
32 f o r token in tokens [1 :] :
33 token type , value = token

191

Computer Project Barricelli Performance Group

34 i f token type == ’ r e g i s t e r ’ and value == ho t r e g i s t e r :
35 t o k e n i z e d l i n e s . i n s e r t (i , ([(’ operator ’ , ’ nop ’)] , ’ ’))
36 h o t r e g i s t e r = None
37
38 # simple l a b e l pass
39 l a b e l s = {}
40 cu r r en t addr e s s = 1
41 f o r l ine number , l i n e in t o k e n i z e d l i n e s :
42 tokens , r e s t = l i n e
43 token type , value = tokens [0]
44 i f token type == ’ l a b e l ’ :
45 l a b e l s [value] = cur r en t addr e s s
46
47 e l i f token type in (’ operator ’ , ’ i f ’) :
48 cu r r en t addre s s += 1
49
50 #actua l assemble pass
51 assembly = []
52 f o r l ine number , l i n e in t o k e n i z e d l i n e s :
53 tokens , r e s t = l i n e
54 i f r e s t :
55 pr in t ’ [%s] : Tokenizer e r r o r near ’ % line number , r e s t
56 return
57
58 tokens = i t e r (tokens)
59 cond i t i on = Cond .ALWAYS
60
61 try :
62
63 whi le True :
64 token = tokens . next ()
65 token type , value = token
66
67 i f token type == ’ i f ’ :
68 token = tokens . next ()
69 token type , value = token
70 p r e f i x = ’ ’
71 i f token == (’ operator ’ , ’ not ’) :
72 token = tokens . next ()
73 token type , value = token
74 p r e f i x = ’ not ’
75 i f token type == ’ cond i t i on ’ :
76 cond i t i on = Cond . f romStr ing (p r e f i x + value)
77 e l s e :
78 pr in t ’Your i f makes no sense . Line number : ’ ,
79 pr in t l ine number
80
81 e l i f token type == ’ operator ’ :
82
83 i n s t r u c t i o n = value . lower ()
84
85 # Three params
86 i f i n s t r u c t i o n in [’ add ’ , ’ addi ’ , ’ and ’ , ’ andi ’ , ’ ld ’ ,
87 ’mul ’ , ’ muli ’ , ’ or ’ , ’ o r i ’ , ’ s l l ’ ,
88 ’ s l l i ’ , ’ s ra ’ , ’ s r a i ’ , ’ s r l ’ , ’ s r l i ’ ,
89 ’ s t ’ , ’ sub ’ , ’ subi ’ , ’ xor ’ , ’ xo r i ’] :
90 , a = tokens . next ()
91 , b = tokens . next ()
92 , c = tokens . next ()
93 i n s t r u c t i o n = inst ruct ion map [
94 value . c a p i t a l i z e ()] (a , b , c)
95
96 # Two params
97 e l i f i n s t r u c t i o n in [’ jmp ’ , ’ l d i ’ , ’ s t i ’ , ’ s tg ’ ,
98 ’cmp ’ , ’mv ’ , ’ neg ’ , ’ not ’] :
99 maybe label , a = tokens . next ()

100 i f maybe label == ’ l a b e l ’ :
101 b = l a b e l s [a]
102 a = 0
103 e l s e :
104 , b = tokens . next ()
105 i n s t r u c t i o n = inst ruct ion map [value . c a p i t a l i z e ()] (a , b)
106
107 # One param
108 e l i f i n s t r u c t i o n in [’ ldg ’ , ’ s e tg ’] :
109 , a = tokens . next ()
110 i n s t r u c t i o n = inst ruct ion map [value . c a p i t a l i z e ()] (a)
111
112 # No params
113 e l i f i n s t r u c t i o n in [’ nop ’ , ’ r e t ’] :
114 i n s t r u c t i o n = inst ruct ion map [value . c a p i t a l i z e ()] ()
115
116 # sp e c i a l ca s e s
117 e l i f i n s t r u c t i o n == ’ c a l l ’ :
118 maybe label , a = tokens . next ()
119 i f maybe label == ’ l a b e l ’ :
120 b = l a b e l s [a]
121 a = 0
122 e l s e :
123 , b = tokens . next ()
124 i n s t r u c t i o n = inst ruct ion map [value . c a p i t a l i z e ()] (a , b)
125
126 i f i n s t r u c t i o n . cond == Cond .UNSET:
127 i n s t r u c t i o n . cond = cond i t i on
128 assembly . append (i n s t r u c t i o n)
129
130 except S top I t e r a t i on :
131 pass
132

192

Computer Project Barricelli Performance Group

133 return assembly
134
135
136 def str ip comments (l i n e s) :
137 new l i n e de l im i t o r = ’ ! newl ine de l im i t o r ! ’
138 l i n e number de l im i to r = ’ ! l i n e number de l im i t o r ! ’
139 l i n e s = [s t r (l ine number) + l ine number de l im i to r + l i n e f o r
140 l ine number , l i n e in enumerate (l i n e s)]
141 jo ined = new l i n e de l im i t o r . j o i n (l i n e s)
142 s t r ipped = re . sub (’ (/\∗ ([ˆ∗] | (\∗+[ˆ∗/]))∗\∗+/) ’ , ’ ’ , j o ined)
143 annotated = f i l t e r (lambda x : x [1] ,
144 [l i n e . s p l i t (l i n e number de l im i to r)
145 f o r l i n e in s t r ipped . s p l i t (n ew l i n e de l im i t o r)])
146 return [(i n t (l ine number) , l i n e) f o r l ine number , l i n e in annotated]
147
148
149 def a s c i i b i n a r y t o r e a l b i n a r y (a s c i i b i n a r y) :
150 return ’ ’ . j o i n (
151 [chr (i n t (’ 0b ’+a s c i i b i n a r y [i : i +8] , 2))
152 f o r i in range (0 , l en (a s c i i b i n a r y) , 8)]
153)
154
155
156 def a s c i i b i n a r y t o vhd l c o d e (a s c i i b i n a r y) :
157
158 def zero pad (s t r ing , l ength) :
159 return s t r i n g + ”0” ∗ max(length − l en (s t r i n g) , 0)
160
161 number o f i n s t ruc t i on s = len (a s c i i b i n a r y)/32
162
163 pr in t ” type mem i s array (0 to ” + s t r (number o f i n s t ruc t i on s + 1) + ”) ” ,
164 pr in t ” o f s t d l o g i c v e c t o r (16−1 downto 0) ; ”
165 pr in t ””
166 pr in t ” constant hi : mem := (”
167 pr in t ” 0 => \”0000000000000000\” , ”
168 i = 0
169 f o r in range (number o f i n s t ruc t i on s) :
170 pr in t ” ” + s t r (i + 1) + ” => \”” + \
171 zero pad (a s c i i b i n a r y [i ∗ 32 : i ∗ 32 + 16] , 16) + ”\” , ”
172 i += 1
173 pr in t ” ” + s t r (i + 1) + ” => \”0000000000000000\””
174 pr in t ”) ; ”
175
176 pr in t ” constant l o : mem := (”
177 pr in t ” 0 => \”0000000000000000\” , ”
178 i = 0
179 f o r in range (number o f i n s t ruc t i on s) :
180 pr in t ” ” + s t r (i + 1) + ” => \”” + \
181 zero pad (a s c i i b i n a r y [i ∗ 32 + 16 : i ∗ 32 + 32] , 16) + ”\” , ”
182 i += 1
183 pr in t ” ” + s t r (i + 1) + ” => \”0000000000000000\””
184 pr in t ”) ; ”

galapagos–assembler/galapagos/base.py

1
2 def binary (num, s i z e) :
3 i f (num < 0) :
4 num = ˜num + 1
5 r ep r e s en ta t i on = bin (num) [2 :]
6 whi le (l en (r ep r e s en ta t i on) < s i z e) :
7 r ep r e s en ta t i on = ’ 1 ’ + r ep r e s en ta t i on
8 e l s e :
9 r ep r e s en ta t i on = bin (num) [2 :]

10 whi le (l en (r ep r e s en ta t i on) < s i z e) :
11 r ep r e s en ta t i on = ’ 0 ’ + r ep r e s en ta t i on
12 return r ep r e s en ta t i on
13
14
15 c l a s s Cond(ob j e c t) :
16 NEVER = 0b0000
17 EQUAL = 0b0001
18 NOT EQUAL = 0b0010
19 GREATER EQUAL = 0b0011
20 GREATER = 0b0100
21 LESS EQUAL = 0b0101
22 LESS = 0b0110
23 OVERFLOW = 0b0111
24 NOTOVERFLOW = 0b1000
25 ALWAYS = 0b1111
26 UNSET = −1
27
28 @staticmethod
29 def f romStr ing (s t r i n g) :
30 return {
31 ’ equal ’ : Cond .EQUAL,
32 ’ not equal ’ : Cond .NOT EQUAL,
33 ’ g r ea t e r than ’ : Cond .GREATER,
34 ’ g r ea t e r than or equal ’ : Cond .GREATER EQUAL,
35 ’ l e s s than ’ : Cond . LESS ,
36 ’ l e s s than or equal ’ : Cond .LESS EQUAL,
37 ’ zero ’ : Cond .EQUAL,
38 ’ not zero ’ : Cond .NOT EQUAL,
39 ’ p o s i t i v e ’ : Cond .GREATER,
40 ’ p o s i t i v e or zero ’ : Cond .GREATER EQUAL,
41 ’ negat ive ’ : Cond . LESS ,

193

Computer Project Barricelli Performance Group

42 ’ negat ive or zero ’ : Cond .LESS EQUAL,
43 ’ over f low ’ : Cond .OVERFLOW,
44 ’ not over f low ’ : Cond .NOT OVERFLOW,
45 ’ never ’ : Cond .NEVER,
46 ’ always ’ : Cond .ALWAYS,
47 } [s t r i n g . lower ()]
48
49
50 c l a s s I n s t r u c t i on (ob j e c t) :
51
52 cond = Cond .UNSET
53 opcode = 0
54
55
56 c l a s s RRR(In s t r u c t i on) :
57
58 rd = 0
59 r s = 0
60 r t = 0
61 funct i on = 0
62
63 def i n i t (s e l f , rd , rs , r t) :
64 super (RRR, s e l f) . i n i t ()
65 s e l f . rd = rd
66 s e l f . r s = r s
67 s e l f . r t = r t
68
69 def toBinary (s e l f , debug=False) :
70 return [’ ’ , ’ cond opcode rd r s N/A rt funct i on\n ’] [
71 debug] + \
72 binary (s e l f . cond , 4) + \
73 [’ ’ , ’ ’] [debug] + \
74 binary (s e l f . opcode , 4) + \
75 [’ ’ , ’ ’] [debug] + \
76 binary (s e l f . rd , 5) + \
77 [’ ’ , ’ ’] [debug] + \
78 binary (s e l f . rs , 5) + \
79 [’ ’ , ’ ’] [debug] + \
80 ’ 00000 ’ + \
81 [’ ’ , ’ ’] [debug] + \
82 binary (s e l f . rt , 5) + \
83 [’ ’ , ’ ’] [debug] + \
84 binary (s e l f . funct ion , 4)
85
86 def r e p r (s e l f) :
87 return s e l f . c l a s s . name . lower () + ’ ’ + s t r (s e l f . rd) + \
88 ’ , ’ + s t r (s e l f . r s) + ’ , ’ + s t r (s e l f . r t)
89
90
91 c l a s s RRI(I n s t r u c t i on) :
92
93 rd = 0
94 r s = 0
95 immediate = 0
96 funct i on = 0
97
98 def i n i t (s e l f , rd , rs , immediate) :
99 super (RRI , s e l f) . i n i t ()

100 s e l f . rd = rd
101 s e l f . r s = r s
102 s e l f . immediate = immediate
103
104 def toBinary (s e l f , debug=False) :
105 return [’ ’ , ’ cond opcode rd r s immediate func t i on\n ’] [
106 debug] + \
107 binary (s e l f . cond , 4) + \
108 [’ ’ , ’ ’] [debug] + \
109 binary (s e l f . opcode , 4) + \
110 [’ ’ , ’ ’] [debug] + \
111 binary (s e l f . rd , 5) + \
112 [’ ’ , ’ ’] [debug] + \
113 binary (s e l f . rs , 5) + \
114 [’ ’ , ’ ’] [debug] + \
115 binary (s e l f . immediate , 10) + \
116 [’ ’ , ’ ’] [debug] + \
117 binary (s e l f . funct ion , 4)
118
119 def r e p r (s e l f) :
120 return s e l f . c l a s s . name . lower () + ’ ’ + s t r (s e l f . rd) + \
121 ’ , ’ + s t r (s e l f . r s) + ’ , ’ + s t r (s e l f . immediate)
122
123
124 c l a s s RI (I n s t r u c t i on) :
125
126 rd = 0
127 immediate = 0
128
129 def i n i t (s e l f , rd , immediate) :
130 super (RI , s e l f) . i n i t ()
131 s e l f . rd = rd
132 s e l f . immediate = immediate
133
134 def toBinary (s e l f , debug=False) :
135 return [’ ’ , ’ cond opcode rd immediate\n ’] [debug] + \
136 binary (s e l f . cond , 4) + \
137 [’ ’ , ’ ’] [debug] + \
138 binary (s e l f . opcode , 4) + \
139 [’ ’ , ’ ’] [debug] + \
140 binary (s e l f . rd , 5) + \

194

Computer Project Barricelli Performance Group

141 [’ ’ , ’ ’] [debug] + \
142 binary (s e l f . immediate , 19)
143
144 def r e p r (s e l f) :
145 return s e l f . c l a s s . name . lower () + ’ ’ + \
146 s t r (s e l f . rd) + ’ , ’ + s t r (s e l f . immediate)

galapagos–assembler/galapagos/instructions.py

1 from base import RRR, RRI , RI , Cond , I n s t r u c t i on
2
3
4 c l a s s Add(RRR) :
5 opcode = 0b1000
6 funct i on = 0
7
8
9 c l a s s Addi (RRI) :

10 opcode = 0b1100
11 funct i on = 0
12
13
14 c l a s s And(RRR) :
15 opcode = 0b1000
16 funct i on = 0b0101
17
18
19 c l a s s Andi (RRI) :
20 opcode = 0b1100
21 funct i on = 0b0101
22
23
24 c l a s s Mul(RRR) :
25 opcode = 0b1000
26 funct i on = 0b0010
27
28
29 c l a s s Muli (RRI) :
30 opcode = 0b1100
31 funct i on = 0b0010
32
33
34 c l a s s Or(RRR) :
35 opcode = 0b1000
36 funct i on = 0b0100
37
38
39 c l a s s Ori (RRI) :
40 opcode = 0b1100
41 funct i on = 0b0100
42
43
44 c l a s s S l l (RRR) :
45 opcode = 0b1000
46 funct i on = 0b0111
47
48
49 c l a s s S l l i (RRI) :
50 opcode = 0b1100
51 funct i on = 0b0111
52
53
54 c l a s s Sra (RRR) :
55 opcode = 0b1000
56 funct i on = 0b0011
57
58
59 c l a s s Sra i (RRI) :
60 opcode = 0b1100
61 funct i on = 0b0011
62
63
64 c l a s s S r l (RRR) :
65 opcode = 0b1000
66 funct i on = 0b1000
67
68
69 c l a s s S r l i (RRI) :
70 opcode = 0b1100
71 funct i on = 0b1000
72
73
74 c l a s s Sub(RRR) :
75 opcode = 0b1000
76 funct i on = 0b0001
77
78
79 c l a s s Subi (RRI) :
80 opcode = 0b1100
81 funct i on = 0b0001
82
83
84 c l a s s Xor (RRR) :
85 opcode = 0b1000
86 funct i on = 0b0110
87

195

Computer Project Barricelli Performance Group

88
89 c l a s s Xori (RRI) :
90 opcode = 0b1100
91 funct i on = 0b0110
92
93
94 c l a s s Cal l (RI) :
95 opcode = 0b0011
96
97
98 c l a s s Jmp(RI) :
99 opcode = 0b0010

100
101
102 c l a s s Ld(RRI) :
103 opcode = 0b0000
104
105 def i n i t (s e l f , rd , rs , immediate) :
106 s e l f . rd = rd
107 s e l f . r s = r s
108 s e l f . immediate = immediate
109
110
111 c l a s s Ldi (RI) :
112 opcode = 0b0100
113
114
115 c l a s s St (RRI) :
116 opcode = 0b0001
117
118 def i n i t (s e l f , rd , rs , immediate) :
119 s e l f . rd = rd
120 s e l f . r s = r s
121 s e l f . immediate = immediate
122
123
124 c l a s s S t i (RI) :
125 opcode = 0b0101
126
127
128 c l a s s Ldg(RRR) :
129 opcode = 0b1001
130
131 def i n i t (s e l f , rd) :
132 s e l f . rd = rd
133
134
135 c l a s s Setg (RI) :
136 opcode = 0b1011
137
138 def i n i t (s e l f , rd) :
139 s e l f . rd = rd
140
141
142 c l a s s Stg (RRR) :
143
144 opcode = 0b1010
145
146 def i n i t (s e l f , rs , r t) :
147 s e l f . r s = r s
148 s e l f . r t = r t
149
150
151 # Pseudo i n s t r u c t i o n s
152
153 c l a s s Cmp(In s t r u c t i on) :
154 def new (s e l f , rs , r t) :
155 return Sub (0 , rs , r t)
156
157
158 c l a s s Mv(In s t r u c t i on) :
159 def new (s e l f , rd , r s) :
160 return Ori (rd , rs , 0)
161
162
163 c l a s s Neg(I n s t r u c t i on) :
164 def new (s e l f , rd , r s) :
165 return Sub(rd , 0 , r s)
166
167
168 c l a s s Nop(In s t r u c t i on) :
169 def new (s e l f) :
170 nop = Add(0 , 0 , 0)
171 nop . cond = Cond .NEVER
172 return nop
173
174
175 c l a s s Not (I n s t r u c t i on) :
176 def new (s e l f , rd , r s) :
177 return Xori (rd , rs , −1)
178
179
180 c l a s s Ret (I n s t r u c t i on) :
181 def new (s e l f) :
182 return Jmp(31 , 0)

galapagos–assembler/galapagos/scanner.py

196

Computer Project Barricelli Performance Group

1 import re
2
3
4 def s l a b e l (scanner , token) :
5 return (’ l a b e l ’ , token)
6
7
8 def s c ond i t i on (scanner , token) :
9 return (’ cond i t i on ’ , token)

10
11
12 def s r e g i s t e r (scanner , token) :
13 return (’ r e g i s t e r ’ , i n t (token [1 :]))
14
15
16 def s i n t 1 0 (scanner , token) :
17 return (’ i n t ’ , i n t (token , 10))
18
19
20 def s i n t 1 6 (scanner , token) :
21 return (’ i n t ’ , i n t (token , 16))
22
23
24 def s i n t 2 (scanner , token) :
25 return (’ i n t ’ , i n t (token , 2))
26
27
28 def s ope ra t o r (scanner , token) :
29 return (’ operator ’ , token)
30
31
32 def s i f (scanner , token) :
33 return (’ i f ’ , token)
34
35
36 def s wh i t e space (scanner , token) :
37 return
38
39
40 scanner = re . Scanner ([
41 (’ [\n \ t\v , :]+ ’ , s wh i t e space) ,
42 (r ’\b(r [0−9]+\b) ’ , s r e g i s t e r) ,
43 (r ’\ b i f \b ’ , s i f) ,
44 (r ’−?0x[0−9a−fA−F]+ ’ , s i n t 1 6) ,
45 (r ’−?0b [01]+ ’ , s i n t 2) ,
46 (r ’−?[0−9]+ ’ , s i n t 1 0) ,
47 (r ’\b(add | addi | and | andi | c a l l | c a l l | jmp | ld | l d i | r e t | ’ +
48 r ’ ldg |mul |muli | or | o r i | s e tg | s l l | s l l i | s ra | s r a i | s r l | ’ +
49 r ’ s r l i | s t | s t i | s tg | sub | subi | xor | xo r i |cmp |mv| neg | nop | not)\b ’ , s ope r a t o r) ,
50 (’ (equal | not equal | g r ea t e r than | g r ea t e r than or equal | l e s s than | ’ +
51 r ’ l e s s than or equal | zero | not zero | po s i t i v e | po s i t i v e or zero | ’ +
52 r ’ negat ive | negat ive or zero | over f low | not over f low | never | always) ’ ,
53 s c ond i t i on) ,
54 (’ [ˆ :0−9\n\ t\v] [ˆ :\n\ t\v]∗ ’ , s l a b e l) ,
55])

197

APPENDIX

E

DEMONSTRATION PROGRAM
LISTINGS

198

Computer Project Barricelli Performance Group

GAS–programs/knapsack/solver.gas

1 /∗
2 ∗ 0x1−0x40 − 64 x ((weight << 32) + value)
3 ∗ 0x41 − weight l im i t
4 ∗ 0x42 + 2n − best genome + best f i t n e s s , f o r each core
5 ∗
6 ∗ r1 : Best genome po s i t i on
7 ∗ r2 : weight l im i t
8 ∗ r3 : gene
9 ∗ r4 : weight used

10 ∗ r5 : s co r e
11 ∗ r6 : Item f l a g (1 , 2 , 4 , . . . , 1<<63)
12 ∗ r7 : Item po inte r (1 , 2 , 3 , . . . , 64)
13 ∗ r8 : Item weight
14 ∗ r9 : Item value
15 ∗ r10 : gene copy , d i s ca rd ing b i t s as items are ” counted”
16 ∗ r11 : best f i t n e s s so f a r
17 ∗ r12 : 0 x f f f f f f f f
18 ∗
19 ∗/
20
21 jmp ONE
22 jmp TWO
23 jmp THREE
24 jmp FOUR
25 jmp FIVE
26 jmp SIX
27 jmp SEVEN
28 jmp EIGHT
29
30 ONE:
31 addi r1 , r0 , 0x42
32 jmp START
33
34 TWO:
35 addi r1 , r0 , 0x44
36 jmp START
37
38 THREE:
39 addi r1 , r0 , 0x46
40 jmp START
41
42 FOUR:
43 addi r1 , r0 , 0x48
44 jmp START
45
46 FIVE :
47 addi r1 , r0 , 0x4a
48 jmp START
49
50 SIX :
51 addi r1 , r0 , 0x4c
52 jmp START
53
54 SEVEN:
55 addi r1 , r0 , 0x4e
56 jmp START
57
58 EIGHT:
59 addi r1 , r0 , 0x50
60 jmp START
61
62 START:
63 /∗ Def ine s e t t i n g s ∗/
64 addi r1 , r0 , 1
65 addi r2 , r0 , 0b00100
66 addi r3 , r0 , 0b100
67 addi r4 , r0 , 0b01000000
68
69 /∗ Load s e t t i n g s ∗/
70 s l l i r1 , r1 , 16
71 s l l i r2 , r2 , 11
72 s l l i r3 , r3 , 8
73 or r5 , r5 , r1
74 or r5 , r5 , r2
75 or r5 , r5 , r3
76 or r5 , r5 , r4
77 se tg r5
78
79
80 l d i r2 , 0x41
81 addi r11 , r0 , 0
82 addi r12 , r0 , −1
83 s r l i r12 , r12 , 32
84
85 MAIN LOOP:
86 ldg r3
87 addi r10 , r3 , 0
88 addi r4 , r0 , 0
89 addi r5 , r0 , 0
90 addi r6 , r0 , 1
91 addi r7 , r0 , 1
92
93 INNER LOOP:
94 and r0 , r3 , r6
95 i f zero : jmp INNER LOOP END
96 xor r10 , r10 , r6

199

Computer Project Barricelli Performance Group

97 ld r8 , r7 , 0
98 and r9 , r8 , r12
99 s r l i r8 , r8 , 32

100 add r4 , r4 , r8
101 add r5 , r5 , r9
102
103 INNER LOOP END:
104 cmp r10 , r0
105 /∗ I f r10 i s zero , we have put a l l the items in the sack ∗/
106 i f equal : jmp MAIN LOOP END
107 cmp r4 , r2
108 i f g r ea t e r than : jmp MAIN LOOP END
109 s l l i r6 , r6 , 1
110 addi r7 , r7 , 2
111 jmp INNER LOOP
112
113 MAIN LOOP END:
114 cmp r4 , r2
115 /∗ I f we had too much weight , s e t value (f i t n e s s) to 0 ∗/
116 i f g r ea t e r than : addi r5 , r0 , 0
117 stg r5 , r3
118 cmp r5 , r11
119 i f l e s s than : jmp MAIN LOOP
120 mv r11 , r5
121 s t r3 , r1 , 0
122 s t r5 , r1 , 1
123 jmp MAIN LOOP

GAS–programs/simple memtest/memtest.gas

1 jmp r0 , INIT ONE
2 jmp r0 , INIT TWO
3 jmp r0 , INIT THREE
4 jmp r0 , INIT FOUR
5
6 INIT ONE :
7 addi r1 , r0 , 0 x1
8 jmp r0 , RUN
9

10 INIT TWO:
11 addi r1 , r0 , 0 x5
12 jmp r0 , RUN
13
14 INIT THREE :
15 addi r1 , r0 , 0 x9
16 jmp r0 , RUN
17
18 INIT FOUR :
19 addi r1 , r0 , 0 xd
20
21 RUN:
22 ld r2 , r1 , 0 x0
23 addi r2 , r2 , 0 x1
24 s t r2 , r1 , 0 x0
25
26 DONE:
27 jmp r0 , DONE

GAS–programs/color–search/color–search.gas

1 /∗
2 ∗ Color Search
3 ∗
4 ∗ A simple gene t i c a lgor i thm sea rche r that s ea r che s f o r a given c o l o r .
5 ∗
6 ∗ Reg i s t e r overview :
7 ∗
8 ∗ r1 : the red co l o r t a rge t
9 ∗ r2 : the green co l o r t a rge t

10 ∗ r3 : the blue co l o r t a rge t
11 ∗ r4 :
12 ∗ r5 : the current i nd i v i dua l
13 ∗ r6 : the current f i t n e s s
14 ∗ r7 :
15 ∗ r8 : the best i nd i v i dua l
16 ∗ r9 : the best f i t n e s s
17 ∗ r10 :
18 ∗ r11 : the current red co l o r
19 ∗ r12 : the current green co l o r
20 ∗ r13 : the current blue co l o r
21 ∗ r14 :
22 ∗ r15 : t o t a l d i s tance
23 ∗ r16 : red co l o r d i s tance
24 ∗ r17 : green co l o r d i s tance
25 ∗ r18 : blue co l o r d i s tance
26 ∗ r19 :
27 ∗ r20 :
28 ∗ r21 : red co l o r mask
29 ∗ r22 : green co l o r mask
30 ∗ r23 : blue co l o r mask
31 ∗ r24 :
32 ∗ r25 : −1
33 ∗ r26 :

200

Computer Project Barricelli Performance Group

34 ∗ r27 :
35 ∗ r28 :
36 ∗ r29 :
37 ∗ r30 :
38 ∗ r31 :
39 ∗/
40
41 en t ry po in t s :
42 /∗ adding a bunch o f jumps , in case o f many pro c e s s o r s ∗/
43 jmp main
44 jmp main
45 jmp main
46 jmp main
47 jmp main
48 jmp main
49 jmp main
50 jmp main
51 jmp main
52 jmp main
53 jmp main
54 jmp main
55
56 main :
57 /∗ Def ine s e t t i n g s ∗/
58 addi r1 , r0 , 1
59 addi r2 , r0 , 0b00100
60 addi r3 , r0 , 0b100
61 addi r4 , r0 , 0b01000000
62
63 /∗ Load s e t t i n g s ∗/
64 s l l i r1 , r1 , 16
65 s l l i r2 , r2 , 11
66 s l l i r3 , r3 , 8
67 or r5 , r5 , r1
68 or r5 , r5 , r2
69 or r5 , r5 , r3
70 or r5 , r5 , r4
71 se tg r5
72
73 /∗ load co l o r masks ∗/
74 addi r21 , r0 , 0xFF
75 s l l i r22 , r21 , 8
76 s l l i r23 , r22 , 8
77
78 /∗ load goa l c o l o r s ∗/
79 addi r1 , r0 , 255
80 addi r2 , r0 , 0
81 addi r3 , r0 , 255
82
83 /∗ load max in t ∗/
84 subi r25 , r0 , 1
85 s r l i r25 , r25 , 1
86
87 loop :
88 /∗ load a new unrated i nd i v i dua l ∗/
89 ldg r5
90
91 /∗ ex t rac t c o l o r in format ion from ind i v i dua l ∗/
92 and r11 , r5 , r21
93 and r12 , r5 , r22
94 s r l i r12 , r12 , 8
95 and r13 , r5 , r23
96 s r l i r13 , r13 , 16
97
98 /∗ c a l c u l a t e d i s tance from co l o r ∗/
99 sub r16 , r1 , r11

100 i f negat ive : neg r16 , r16
101 sub r17 , r2 , r12
102 i f negat ive : neg r17 , r17
103 sub r18 , r3 , r13
104 i f negat ive : neg r18 , r18
105
106 /∗ sum the d i s t anc e s ∗/
107 add r15 , r16 , r17
108 add r15 , r15 , r18
109
110 /∗ c a l c u l a t e the f i t n e s s ∗/
111 sub r6 , r25 , r15
112
113 /∗ s t o r e the gene with the d i s tance sum as the f i t n e s s s co r e ∗/
114 stg r6 , r5
115
116 /∗ compare to best ∗/
117 cmp r6 , r9
118 i f l e s s than : jmp loop
119
120 /∗ s t o r e new ∗/
121 mv r8 , r5
122 mv r9 , r6
123
124 /∗ repeat ! :D ∗/
125 jmp loop

201

APPENDIX

F

TEST BENCH
DOCUMENTATION

202

Computer Project Barricelli Performance Group

F.1 Introduction

This document provides additional documentation and graphics from unit test
benches, used for verifying the components in the FPGA. The graphics are
selected screenshots taken in ISim.

F.2 Component Tests

F.2.1 Fitness Core

In order to test the fitness cores a set of small assembly programs were created.
These programs aims to test various cases in the galapagos architecture. The
tests are included here for reference.

RRR-RRI Instructions Simple program testing the use of RRI and RRR
instructions

testing/gas–listings/rrr–rri.gas

1 /∗ bas i c RRI t e s t ∗/
2
3 addi r1 , r0 , 0xBA
4 s l l i r1 , r1 , 8
5 addi r1 , r0 , 0x12
6 s l l i r1 , r1 , 8
7 addi r1 , r0 , 0x12
8 s l l i r1 , r1 , 8
9 addi r1 , r0 , 0x1C

10 s l l i r1 , r1 , 8
11 addi r1 , r0 , 0xEC
12 s l l i r1 , r1 , 8
13 addi r1 , r0 , 0xC1
14
15 /∗ r1 should now conta in 0xBA1212ICECC1 ∗/
16
17 /∗ bas i c RRR t e s t ∗/
18
19 add r2 , r1 , r0
20
21 /∗ r2 should now conta in 0xBA1212ICECC1 ∗/

Store instruction Demonstrating the store instruction

testing/gas–listings/store.gas

1 /∗ s t o r e data t e s t ∗/
2
3 addi r1 , r0 , 1
4 s t r1 , r0 , 0
5
6 /∗ value in memory at address zero should be 1 ∗/

Load instruction Demonstrating the load instruction instruction

testing/gas–listings/load.gas

1 /∗ load t e s t ∗/
2
3 addi r3 , r0 , 1
4 s t r3 , r0 , 0
5 ld r1 , r0 , 0
6
7 /∗ r1 shoudld conta in 1 ∗/

203

Computer Project Barricelli Performance Group

Conditional execute Demonstrating code with conditionals that evaluate to
true.

testing/gas–listings/conditional–executed.gas

1 /∗ c ond i t i ona l taken t e s t ∗/
2
3 addi r1 , r0 , 1
4 cmp r1 , r0
5 i f not equal : addi r1 , r1 , 1
6 /∗ r1 shoudld be 2 ∗/

Conditional non-execute Demonstrating code with conditionals that eval-
uate to false.

testing/gas–listings/conditional–not–executed.gas

1 /∗ c ond i t i ona l taken t e s t ∗/
2
3 addi r1 , r0 , 1
4 cmp r1 , r0
5 i f equal : addi r1 , r1 , 1
6 /∗ r1 shoudld be 1 ∗/

Branch taken Demonstrating an conditional branch where the conditional is
evaluated to true.

testing/gas–listings/branch–taken.gas

1 /∗ branch taken t e s t ∗/
2
3 addi r1 , r0 , 1
4 cmp r0 , r1
5 i f not equal : jmp end
6 addi r1 , r1 , 1
7 addi r1 , r1 , 1
8 addi r1 , r1 , 1
9 end :

10 /∗ r1 should be 1 at t h i s point ∗/
11 jmp end

Branch not-taken Demonstrating an conditional branch where the condi-
tional is evaluated to false.

testing/gas–listings/branch–not–taken.gas

1 /∗ branch taken t e s t ∗/
2
3 addi r1 , r0 , 1
4 cmp r0 , r1
5 i f equal : jmp end
6 addi r1 , r1 , 1
7 addi r1 , r1 , 1
8 addi r1 , r1 , 1
9 end :

10 /∗ r1 should be 4 at t h i s point ∗/
11 jmp end

Store gene Demonstrate the use of the store gene instruction.

testing/gas–listings/store–gene.gas

1 /∗ s t o r e gene t e s t ∗/
2
3 addi r1 , r0 , 1
4 addi r2 , r0 , 2
5 stg r2 , r1
6
7 /∗ an i nd i v i dua l (’ 1 ’) with f i t n e s s 2 should be sent to the rated pool ∗/

204

Computer Project Barricelli Performance Group

Load gene Demonstrate the use of the load gene instruction.

testing/gas–listings/load–gene.gas

1 /∗ load gene t e s t ∗/
2
3 stg r1
4
5 /∗ r1 should conta in an unrated i nd i v i dua l from the unrated pool ∗/

F.2.2 Genetic Pipeline

Selection Core

Crossover Core

Figure F.1: Crossover Split Simulation Screenshot

Figure F.1 shows the simulation of Crossover Split function, where the blue
markers are set just before the crossover begins. Changes in input parents and
random number causes changes in children.

Figure F.2: Crossover Double-Split Simulation Screenshot

Figure F.2 shows the simulation of Crossover Double-Split function, where the
blue markers are set alternating before and after crossover. Changes in input
parents and any random number causes changes in children.

Figure F.3: Crossover XOR Simulation Screenshot

Figure F.3 shows the simulation of Crossover XOR function, where the blue
marker is set at a change in the random number, causing changes on the crossover

205

Computer Project Barricelli Performance Group

in the children. Changes in input parents and any random number causes
changes in children.

Figure F.4: Crossover Toplevel Simulation Screenshot

Figure F.4 shows the simulation of Crossover toplevel, where the blue markers
are set at changes in the control input, changing from split to double-split, then
to XOR, and finally to no crossover at all.

Mutation Core

Figure F.5: Mutation Core Simulation Screenshot 1

Figure F.5 shows the simulation of the Mutation Core, where the blue markers
are set just before the bits that are mutated in the output. Figure F.6 shows
another part of the same simulation, with different main input.

Figure F.6: Mutation Core Simulation Screenshot 2

206

APPENDIX

G

PCB COMPONENTS

This is the list of components used in the production of Barricelli.

With the exception of the FPGA and Microcontroller, all components were
ordered from Farnell and are listed with their farnell product number. The
FPGA and microcontroller were ordered from Digi-Key and are listed with their
full identifiers instead.

207

Computer Project Barricelli Performance Group

Component Farnell product № №required
Oscillator 1842148 1
Jumpers 4218176 86
Headers 1580053 278
EFM32GG390F1024-BGA112 Ordered from digi-key 1
XC6SLX45-2CSG324I Ordered from digi-key 1
Serial Port Connector 1653978 1
Serial Port Driver 1287435 1
Power Connector 224960 1
Memory Chip 2103743 3
LED, red 8554510 6
LED, green 5790852 16
micro USB Receptacle 2293751 1
SD Card Receptacle 2226409 1
Voltage Regulator 1685484 1
Voltage Regulator 3.3V 1469037 1
Switch (button) 3801287 8
Switch (toggle) 1524244 1
Transient Voltage Suppressor 1748616 1
ESD Suppressor (30V VCL) 1850152 1
ESD Suppressor (17V VCL) 1850151 1
Resistor 50k R 2057780 7
Resistor 0 R 1653183 1
Resistor 56 R 1738995 18
Resistor 105 R 2139353 1
Resistor 120 R 1470033 1
Resistor 330 R 2333547 3
Resistor 100k R 9240764 1
Capacitor 100 nF 1759297 59
Capacitor 1 uF 1759455 3
Capacitor 4.7 uF 1759444 1
Capacitor (Electrolyte) 100 nF 9697039 5
Capacitor (Electrolyte) 10 uF 2326109 4

208

BIBLIOGRAPHY

[1] AN0030 - FAT on SD Card. http://www.silabs.com/Support%

20Documents/TechnicalDocs/AN0030.pdf.

[2] An0043 - efm32 debug and trace. http://www.silabs.com/Support%

20Documents/TechnicalDocs/AN0043.pdf.

[3] AN0045 - USART/UART - Asynchronous mode. http://www.silabs.

com/Support%20Documents/TechnicalDocs/AN0045.pdf.

[4] AN0046 - USB Hardware Design Guide. http://www.silabs.com/

Support%20Documents/TechnicalDocs/AN0046.pdf.

[5] AN0065 - EFM32 as USB Device. http://www.silabs.com/Support%

20Documents/TechnicalDocs/AN0065.pdf.

[6] AS7C38098A 512K X 16 BIT HIGH SPEED CMOS SRAM Datasheet.
http://www.alliancememory.com/pdf/sram/fa/as7c38098a.pdf.

[7] Dieharder: A Random Number Test Suite.

[8] EFM32GG990 Datasheet F1024/F512. http://cdn.energymicro.com/

dl/devices/pdf/d0046_efm32gg990_datasheet.pdf.

[9] FatFs - Generic FAT File System Module. http://elm-chan.org/fsw/

ff/00index_e.html.

[10] Junit. http://junit.org/.

[11] Karma. http://karma-runner.github.io/0.10/index.html.

[12] Previous projects in TDT4295 Computer Design. http://www.idi.ntnu.
no/emner/tdt4295/oldproj.

209

http://www.silabs.com/Support%20Documents/TechnicalDocs/AN0030.pdf
http://www.silabs.com/Support%20Documents/TechnicalDocs/AN0030.pdf
http://www.silabs.com/Support%20Documents/TechnicalDocs/AN0043.pdf
http://www.silabs.com/Support%20Documents/TechnicalDocs/AN0043.pdf
http://www.silabs.com/Support%20Documents/TechnicalDocs/AN0045.pdf
http://www.silabs.com/Support%20Documents/TechnicalDocs/AN0045.pdf
http://www.silabs.com/Support%20Documents/TechnicalDocs/AN0046.pdf
http://www.silabs.com/Support%20Documents/TechnicalDocs/AN0046.pdf
http://www.silabs.com/Support%20Documents/TechnicalDocs/AN0065.pdf
http://www.silabs.com/Support%20Documents/TechnicalDocs/AN0065.pdf
http://www.alliancememory.com/pdf/sram/fa/as7c38098a.pdf
http://cdn.energymicro.com/dl/devices/pdf/d0046_efm32gg990_datasheet.pdf
http://cdn.energymicro.com/dl/devices/pdf/d0046_efm32gg990_datasheet.pdf
http://elm-chan.org/fsw/ff/00index_e.html
http://elm-chan.org/fsw/ff/00index_e.html
http://junit.org/
http://karma-runner.github.io/0.10/index.html
http://www.idi.ntnu.no/emner/tdt4295/oldproj
http://www.idi.ntnu.no/emner/tdt4295/oldproj

Computer Project Barricelli Performance Group

[13] David A.Patterson and John L. Hennessy. Computer Organization and
Design. Elsvier, Revised 4th edition, 2012.

[14] David Noever. Steady-State vs. Generational Genetic Algorithms : A Com-
parison of Time Complexity and Convergence Properties. 1992.

[15] David B. Fogel. Nils Barricelli—Artificial Life, Coevolution, Self-
Adaptation. http://ieeexplore.ieee.org/stamp/stamp.jsp?

arnumber=01597062, 2006.

[16] Gunnar Tufte. TDT4295 Computer Design Project Assignment Text 2013.
It’s Learning.

[17] Juraj Hromkovič. Algorithmics for Hard Problems. Springer, 2nd edition,
2004.

[18] Nadia Nedjah and Luiza de Macedo Mourelle. Hardware Architecture
for Genetic Algorithms. http://download.springer.com/static/pdf/

217/chp%253A10.1007%252F11504894_76.pdf?auth66=1380662030_

cebfeff2fc5857025c25324f3efb4818&ext=.pdf. .

[19] Norihiko Yoshida. VLSI Hardware Design for Genetic Algorithms and Its
Parallel and Distributed Extensions. 1999.

[20] Paul Graham and Brent Nelson. Genetic Algorithms In Software and In
Hardware – A Performance Analysis of Workstation and Custom Com-
puting Machine Implementations. http://www.pvv.org/~gombos/GA%

20FPGA%20vs%20Software.pdf.

[21] Raymond Sung and Andrew Sung and Patrick Chan and Jason Mah. Lin-
ear Feedback Shift Registers. http://www.ece.ualberta.ca/~elliott/

ee552/studentAppNotes/1999f/Drivers_Ed/lfsr.html. .

[22] redisthefastestcolor@tumblr.com. Red is the fastest color.
http://redisthefastestcolor.tumblr.com/post/44938966112.

[23] Xunying Zhang and Chen Shi and Fei Hui. FPGA-Based Genetic Al-
gorithm Kernel Design. http://link.springer.com/content/pdf/10.

1007%2F978-3-540-74626-3_40.pdf.

210

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01597062
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01597062
http://download.springer.com/static/pdf/217/chp%253A10.1007%252F11504894_76.pdf?auth66=1380662030_cebfeff2fc5857025c25324f3efb4818&ext=.pdf
http://download.springer.com/static/pdf/217/chp%253A10.1007%252F11504894_76.pdf?auth66=1380662030_cebfeff2fc5857025c25324f3efb4818&ext=.pdf
http://download.springer.com/static/pdf/217/chp%253A10.1007%252F11504894_76.pdf?auth66=1380662030_cebfeff2fc5857025c25324f3efb4818&ext=.pdf
http://www.pvv.org/~gombos/GA%20FPGA%20vs%20Software.pdf
http://www.pvv.org/~gombos/GA%20FPGA%20vs%20Software.pdf
http://www.ece.ualberta.ca/~elliott/ee552/studentAppNotes/1999f/Drivers_Ed/lfsr.html
http://www.ece.ualberta.ca/~elliott/ee552/studentAppNotes/1999f/Drivers_Ed/lfsr.html
http://link.springer.com/content/pdf/10.1007%2F978-3-540-74626-3_40.pdf
http://link.springer.com/content/pdf/10.1007%2F978-3-540-74626-3_40.pdf

	I Introduction and Background
	Introduction
	Assignment
	Assignment Text
	Interpretation

	Requirements
	Functional Requirements
	Non-functional Requirements

	Deliverables
	About the Name
	Structure of this Report

	Background
	MIMD Computing
	Genetic Algorithms
	Concepts and Definitions
	Pseudo-code for a General Genetic Algorithm
	Generational Genetic Algorithms
	Steady State Genetic Algorithms

	II Design and Implementation
	System Overview
	Application
	System Architecture
	Components
	FPGA
	SCU
	Memory

	Processor Design
	Initial requirement
	Parallelism

	Instruction Set Architecture
	Instruction Formats
	Genetics Instructions

	Processor Architecture
	Instruction Memory
	Data Memory
	Rated and Unrated Pools
	PRNG Module
	Fitness Core
	The Genetic Pipeline

	PCB
	Design choices
	Field Programmable Gate Array (FPGA)
	Microcontroller / System Control Unit (SCU)
	Communication
	Input/Output devices
	Memory
	Crystal

	Power supply
	Power plane
	Footprints
	Obtaining footprints

	Budget
	Design Process
	PCB design and routing
	Soldering

	Problems and workaround
	 Power connector footprint
	 FPGA to SCU bus routing
	 USB port
	Oscillator

	Input/Output
	Input and Output
	Initial requirements
	Communication channels

	FPGA Control
	IO Program
	Design decision
	Operating system
	FPGA Communication

	Issues
	Crystal
	I/O units failing
	FPGA Memory access issues

	Additional Components
	galapagos assembler
	Case
	Design
	Tools
	Problems and workarounds

	III Results and Discussion
	Tests
	Testing the Processor
	VHDL-based Subcomponent Unit Test Simulations
	VHDL-based Processing Unit Integration Test Simulations
	VHDL-based System test Simulations
	Timing simulation

	Testing the PCB
	Testing IO
	IO device tests
	FPGA bus

	Additional Tests
	The Pseudo-Random Number Generator

	Results
	Research
	Steady State Genetic Algorithm

	Measurements
	Performance

	Demonstration Programs
	Genetic Algorithm: Color Search
	Genetic Algorithm: Binary Knapsack Problem
	Blinkenlights

	Discussion
	Performance
	Performance Measurements and Benchmarking
	Average Instructions per Cycle

	Theory
	SPMD and Concurrency
	Using CISC or RISC ISAs
	Memory Management Policies

	Work Process
	Development model
	Group Organization
	Organizational tools
	GitHub
	Trello

	Tools
	Software
	Hardware

	Conclusion and Further Work
	Further Work

	Glossary

	IV Appendices
	Galapagos Instruction Set Architecture Documentation
	PCB schematics
	Case schematics
	Galapagos Assembler Listing
	Demonstration Program Listings
	Test Bench Documentation
	Introduction
	Component Tests
	Fitness Core
	Genetic Pipeline

	PCB Components

